睿象云智能告警平台的分派策略
842
2023-02-05
本文目录一览:
随着银行业务形态的增多、体量的变大,系统规模快速扩大,每天产生的数据信息呈几何式增长,其中包括大量的客户数据、交易数据和运行数据等。
这些信息数据量十分巨大,且具有非常大的潜在价值,也是大数据应用的基础来源。但却分散在各个中心服务器或者设备的不同位置,对运维数据的统一管理、监控、信息挖掘变得越来越困难,也使得运维工作量越来越大。
因此必须借助一定的手段和方式,增强数据治理和全面分析的能力,化被动运维为主动运营。而这些都是智能运维AIOps所具备的。智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维的本质是提升运维数据的认知能力,它在提升运维数据治理能力、优化企业业务数字化风险、降低运维人力成本和提升运维在业务侧的影响力方面都有本质的提升。
下面给大家用最近公司做的一个案例进行解析:
背景
根据中国银监会《商业银行信息科技风险管理指引》(银监发〔2009〕19号)中针对日志文件完整性、存留周期的相关要求,结合当下监管部门对银行数据治理相关监督的指引,为提高银行竞争力,高质量快速完成数字化转型,将数据价值向资产化过渡,某行拟建设统一的运维大数据处理平台。优先选择从日志场景切入,精细化分析能力,打造场景化应用,实现全面可观测性,保障业务平稳高效运行。
方案简述
运维大数据平台的构建基于分布式高可用架构,满足容量随着业务需要动态扩展的需求;优化数据采集手段,实现对IT环境的实时数据采集以及集中高效的存储、查询、分析及可视化展示;基于流批一体的数据处理技术,实现全局数据秒速查询。内置AI智能分析引擎,除了能够解决异常检测、异常定位及辅助故障定位等运维痛点问题外,通过数据建模和洞察还可以对系统进行综合健康及风险分析。
另外,平台对数据处理操作非常友好,用低代码的方式实现对复杂数据的处理,如交易数据的实时响应时间计算,需要从日志中提取请求及响应的时间,再根据交易特征进行计算和时间窗口聚合,类似这种复杂操作,只需要一条数据处理流就可轻松完成。
本次案例是智能运维助力实现全面可观测性的一次成功落地实践,案例从两方面入手,一是事前做好各类型的数据链接、监控等,分层次,找关联;另一方面在观测到问题后能够快速评估问题影响,收敛问题并找到根因。
数字化转型中,以用户为中心是驱动金融行业的核心基础,而采用先进的运维手段(智能运维)则是企业不断前行的源源动力。
通常智能运维中的告警收敛场景,以机器学习算法为驱动,对海量的告警事件进行降噪和关联分析,辅助根因定位并可沉淀故障处理的知识,从而提升企业的运维效率,降低运维成本。 告警产生后,AIOps系统通过算法甄别 内容相关性(重复性、相似性)、时序相关性和拓扑相关
性 事件来进行告警事件的自动化抑制。这类收敛抑制,往往能得到99%的告警压缩率,极大地提高了告警有效性。
在一个完整的智能运维告警产品里,除了告警收敛,还可以基于故障传播链及拓扑信息 ( 可选 ), 智能发现突发故障场景;基于告警“熵值”算法,实现告警的动态优先级推荐;通过时序以及拓扑关系定位故障场景根因,并进行根因标记。当这些都可以完成时,由告警事件一步步引导的根因定位和排障,才是真正智能运维发挥了作用。
发表评论
暂时没有评论,来抢沙发吧~