集成运放的非线性失真分析及电路应用

网友投稿 829 2022-12-22

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

集成运放的非线性失真分析及电路应用

0 引言

l 差分电路的接入方法和集成运放的非线性参数

2.1 AD8062主要性能介绍

输出电压摆动为6 mV;3 dB带宽为500 MHz;电压摆率为800 V/μs;差分放大相位误差为O.04°;电源电压为2.7~8 V。AD8062是双集成运算放大器,可以同时对两路信号进行放大输出。共模输入电压范围也较大,能够在低电源电压供电电路中使用;输出端采用轨对轨(Rail to Rail)反馈放大器方式,扩展了输出电压范围,更加方便了AD8062的使用。相比于同类型电流反馈放大器,AD8062具有较宽的信号输入带宽和较高的压摆率特性,适合应用在扩频通信电路中。

2.2 AD8062电路实现和应用

在下变频器输出信号为-28 dBm的情况下,由图2可以看出AD8062的增益为11 dB左右,信噪比为20 dB左右,该增益基本满足理论计算值。但是,当下变频器输出信号为-12 dBm时,输入到AD8062信号的各次谐波功率均大于-50 dBc。由图3可发现,在AD8062的大信号输入时AD8062的非线性特性使得输出信号严重失真,5 MHz信号带宽内二次谐波为-10 dBc,信号输出功率不能满足理论计算值。AD8062的严重带内谐波失真,使得后端无法检测到有用的信号,造成了这种电路无法正常使用。

2.3 AD8062的非线性分析和电路优化

AD8062的差分放大电路连接方式2中,隔直电容可以有效减小输入到反相端的直流电压,同时通过交流有用信号,这样就减小了集成运放的输入共模电压,保持了差分电路在静态工作点的较大线性范围,差分对管的输出电流能够线性跟随输入信号变化。隔直电容的加入除了对低频信号有些影响外,输入集成运放的差模电压能够高效传输给A/D变换器。在设计的ISM频段定位系统时,使用基带扫频信号最低频率为100 kHz,这样就能最大程度地降低隔直电容对低频信号的影响。优化电路的特性频谱特性如图4和图5所示。

连接方式2与方式1的频率输入条件相同,在输入单频信号功率为-28 dBm时,优化电路的集成运放增益大于11 dB,并且对带外噪声有了更大的抑制作用,信噪比也比连接方式1提高了1 dB。在输入单频信号功率为-12 dBm时,由于共模输入电压的减小,使得AD8062能够工作在线性范围,各次谐波功率均小于-45 dBc,输出信号功率也有了4 dB提高。优化电路成功地完成了在射频接收前端的试验测试,能够为后端电路检测信号提供较大的信号功率。而满足A/D采样门限要求。

同时,在ISM频段定位系统整体测试中,AD8062的使用能够使得接收射频前端达到接收机灵敏度的要求,信号处理部分能够正确捕获定位数据。在试验调试中发现,双集成运放AD8062的I/Q两路输入信号功率不能有太大的偏差,否则,电路不能正常工作。在设计的定位系统射频前端电路中,采用正交下变频器AD8347的I/Q两路信号输出功率偏差较小,AD8062能够满足设计要求。

3 结语

通过对集成运放连接电路的非线性分析,找到了AD8062产生谐波失真的原因,并且优化设计了新的电路连接方式。这种优化电路设计在不改变集成运放增益的前提下,使接收射频前端的灵敏度提高了1 dB,大大提高了整个系统的动态范围,并且能够保证接收机在大信号输入时的谐波失真小于-50 dBc。在ISM频段定位系统的设计中,优化设计电路输出信号信噪比和功率大小均能满足A/D的采样要求,能够为后端定位检测算法提供相关数据。在不同条件和不同电路的设计系统中。集成运放的应用同样会出现非线性失真问题,上述集成运放的非线性分析方法具有一定的参考价值。

上一篇:性能测试的方法有哪些(性能测试方法包括)
下一篇:ai智能运维开源(ai 运维)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~