运维告警(运维告警级别)

知梧 1153 2022-10-20

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

本文目录一览:

公司购买了很多安全设备,但安全运维人员还是需要面对很多无效告警,运营效率低下,有什么解决方案吗?

在传统的运维方式中,原始的事件里有许多重复性的、杂乱的噪音信息,而且某一个组件发生问题,往往会引发相关的组件都产生报警,这样在短时间内就会产生告警风暴,这也会严重影响运维人员的判断,因此传统的集中监控,都是依赖运维人员的经验梳理规则,并将事件归并、关联的规则运用于平台,实现告警抑制。这样就会出现你提问的这种情况,导致运营效率低下。

这时建议可以采用“智能运维”的手段,AIOps智能运维能够对传统集中监控进行智慧赋能,比如我们以擎创科技的夏洛克AIOps告警辨析中心为例,来展开分析这种AI赋能的几种方式:

1. 对既有的完全基于经验进行规则梳理的处理方式的智慧赋能

2. 对事件的精细化分析能力的智慧赋能

3. 通过建立人工和智能相融合的迭代反馈机制促使监控持续优化

综上所述,集中监控作为运维的“双眼”,应该是AIOps智慧赋能的第一站,赋能后的智能化集中监控将具备三大优势:

能够以更低的人力成本更及时有效地发现问题端倪,提高了业务保障能力;

能够更深入的洞察和分析告警,提升了故障排查效能;

能够利用人机融合的智慧,建立持续改进的机制,并且为进一步进行基础指标监控以及日志分析等其他领域的智能化改造提供了指导方向。

如何才能做到对告警通知有效管理?

其实在一线运维工作中,常常是福不双至,故障不单行。每有运维问题发生的时候,往往会密集发生多个告警。当这些告警来袭的时候,一线运维人员要针对它的类型、等级、告警对象和内容等进行检查并选用合适的方法来应对。

告警等级较高时,比如持续出错的应用告警,在查验后会立即分派通知相关的负责人在第一时间开具事件工单,做对应的流程追踪;而遇到低等级或次要的系统告警,则可以暂缓处置,留作观察。

传统的处置方式需要用经验来判断问题的影响范围和严重性,再通过人工进行派单以及通知下游处理人员,这样效率低下,无法满足现今业务响应速度的要求了。

究其原因,有些周期性发生的高频问题,往往并不是最棘手的,是可以延后处置的。反而偶发的问题,比较需要特别关注(如果这是原始定级较高的故障,更应该第一时间关注)。

所以,在告警发生的时候,可以使用告警优先级推荐算法来分析处理问题。根据规律特征进行判别,看是否需要立即关注。再配合自动化工具,将推荐等级与原始等级都高的告警加上筛选规则,进行自动化开单处置。发现推荐等级与原始等级有背离的部分,可以筛选出来做复盘,对告警原始的等级进行优化,或者转化成升降级的规则逻辑来处置告警等级。

告警风暴会影响运维的工作效率吗?

对于监控的告警信息,处理的好,将会提高我们的故障响应速度,处理的不好,会影响我们的工作情绪,适得其反。试想一下,当一天我们受到了1000条告警信息,是不是会感到头疼,是否会逐一查看监控告警信息?对于误报、漏报,会让人对信息的警觉性放松,时间久了,就会导致运维人员的疲惫感和压力感,当情绪出现问题的时候,势必会影响运维的工作效率。其实对于告警风暴你可以去了解下听云北冥告警平台,可以有效的降低企业的告警信息,避免重复告警的出现,还增加了告警算法,提高了告警的准确性。

智能运维是如何抑制告警风暴的?

通常智能运维中的告警收敛场景,以机器学习算法为驱动,对海量的告警事件进行降噪和关联分析,辅助根因定位并可沉淀故障处理的知识,从而提升企业的运维效率,降低运维成本。 告警产生后,AIOps系统通过算法甄别 内容相关性(重复性、相似性)、时序相关性和拓扑相关

性 事件来进行告警事件的自动化抑制。这类收敛抑制,往往能得到99%的告警压缩率,极大地提高了告警有效性。

在一个完整的智能运维告警产品里,除了告警收敛,还可以基于故障传播链及拓扑信息 ( 可选 ),智能发现突发故障场景;基于告警“熵值”算法,实现告警的动态优先级推荐;通过时序以及拓扑关系定位故障场景根因,并进行根因标记。当这些都可以完成时,由告警事件一步步引导的根因定位和排障,才是真正智能运维发挥了作用。


上一篇:思维造物七次折戟IPO,资本不为“贩卖焦虑”买单
下一篇:4连板奥维通信收关注函:要求说明基本面是否发生重大变化及董监高是否涉嫌内幕交易
相关文章

 发表评论

暂时没有评论,来抢沙发吧~