实时警报通知:微信告警通知的重要性解析
771
2023-03-19
本文目录一览:
智能运维平台,又称AIOps,是将AI赋能于IT传统运维,通过对日志、指标、Trace等数据的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。
一套完整的智能运维平台系统,通常包括:
(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。
(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案
(3)告警辨析中心:智能化集中告警,构建闭环告警管理
(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析
(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测
(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景
智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次
IT的智能运维AIOps,目前在国内落地比较多的是对IT故障容忍率更低的行业,比如金融、交通、互联网等等。各厂商主要的差异在于数据治理的能力和经验(当数据量越来越大时,一个好的运维数据中台可以保证运行性能)、产品线的覆盖度(告警、日志、指标等均可进行智能分析)、智能场景的丰富度。
对于智能运维来说,常见的智能场景有异常检测、根因定位、自动排障、容量预测、告警收敛、日志聚类等。随着应用的进一步广泛,智能场景也会不断更新、越来越多。
AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。
传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。
经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。
Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。
相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。
通常,AIOps智能运维系统包含这几个功能模块:
智能运维智能运维场景驱动系统,基本上有IT运维需求智能运维场景驱动系统的领域都涉及。但目前还在起步发展阶段,国内应用比较多的主要是金融业(银行证券保险)、能源、物流、政务及智能制造业。相信在不久的将来,智能运维将会替代传统运维,成为行业标配。
智能运维通常需要统一管理监控、日志等运维数据,并对它进行智能化分析。主要场景包含告警收敛、异常检测、多指标根因定位、多维分析、全链路监控、同源分析、容量预测、健康分析、系统画像、业务全景运营视图等。
关于智能运维场景驱动系统和智能运维设备的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能运维场景驱动系统的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于智能运维设备、智能运维场景驱动系统的信息别忘了在本站进行查找喔。发表评论
暂时没有评论,来抢沙发吧~