aiops根因分析算法(根因分析怎么做)

来源网友投稿 968 2023-03-08

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops根因分析算法,以及根因分析怎么做对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享aiops根因分析算法的知识,其中也会对根因分析怎么做进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

相比传统运维工具,AIOps的优势在哪里

所谓的AIOps,简单理解就是基于自动化运维,将AI和运维很好的结合起来。

AIOps的落地在多方面直击传统运维的痛点,AI算法承担起分析海量运维数据的重任,能够自动、准确地发现和定位问题,从决策层面提高运营效率,为企业运营和运维工作在成本、质量和效率方面的优化提供了重要支持。

可见,AIOps 在企业中的作用正在进一步放大。但事实上,很多企业对于AIOps 能解决什么问题并不清晰,今天我们就以博睿数据的AIOps 的三大场景和算法说起。

博睿数据的AIOps 实践

作为中国领先的智能可观测平台,在AIOps实践方面,多年来博睿数据积极拥抱人工智能、机器学习等新技术变革的浪潮,并基于AI和机器学习技术,自主研发了“数据接入、处理、存储与分析技术”核心技术体系,全面布局智能基线、异常检测、智能告警、关联分析、根因分析等丰富且广泛的智能运维功能,并将AIOps能力融入端到端全栈监控产品线,可为传统企业提供强大的数据处理、存储和分析的软件工具,帮助客户整合各类IT运维监控数据,实现数据的统一存储和关联分析,打破数据孤岛,构建统一的IT运维管理平台,让企业的IT运维更加智能化、自动化。

在此基础上,博睿数据还依托完整的IT运维监控能力,利用大数据和机器学习技术持续构建先进的智能运维监控产品,2021年先后推出了搭载了AI能力的新一代APM产品Server7.0和新版的统一智能运维平台Dataview,不断落地智能异常检测、根因分析、故障预测等场景。基于人工智能的能力实现运维监控场景的信息整合、特征关联和业务洞察,帮助企业确保数字化业务平稳运行,并保障良好的数字化体验。

目前,博睿数据在AIOps 技术方面主要落地了三大场景。即智能基线预测、异常检测及告警收敛。

随着企业业务规模扩大,云原生与微服务的兴起,企业IT架构复杂性呈现指数级增长。而传统的IT运维手段面临故障发生后,查找故障原因困难,故障平均修复时间周期长,已无法满足新的运维要求。因此运用人工智能赋能运维,去取代缓慢易错的人力决策,快速给出运维决策建议,降低问题的影响并提前预警问题就成为了必然。AIOps作为目前运维发展的最高阶目标,未来将会赋能运维带给用户全新的体验。

但需要注意的是,当前智能运维的很多产品和项目在企业侧落地效果并不理想,究其原因可归类为三点:一是数据采集与AI平台割裂,多源数据之间的关联关系缺失导致AI平台缺乏高质量的数据,进而导致模型训练效果不佳;二是数据采集以metric和log为主,导致应用场景较窄且存在数据孤岛问题;三是AI平台能力尚有提升空间。当前落地的场景多以异常检测与智能告警为主,未来需要进一步提升根因分析与故障预测的能力。

因此,未来企业首先要建设一体化监控运维平台,一体化是智能化的基础。基于一体化监控运维平台采集的高质量的可观测数据数据以及数据之间的关联关系,进一步将AIOps的能力落地到一体化监控运维平台中,从而实现问题精准定位与见解能力。

此外,在实际应用中,依据信通院的相关调查,其受访企业中只有不足20%的企业具有智能化监控和运维决策能力,超过70%的企业在应用系统出现故障的10分钟内一筹莫展。

各行业的数字化转型正在改变这一现状,不仅互联网企业,更多传统企业的数字化转型为智能运维开拓了更广阔的市场,智能运维有着巨大的发展空间,这也是博睿数据等行业领先企业发力的大好时机。

提升创新能力,推广智能运维不仅是相关服务商自身发展的要求,也是提升我国企业应用管理和运维水平的使命。

中国企业数字化转型加速,无论是前端的应用服务迭代更新,还是后端IT运维架构的复杂度提升,都在加速培育智能运维的成长。

AIOps是什么?

AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。

传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。

经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。

Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。

相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。

通常,AIOps智能运维系统包含这几个功能模块:

什么是AIOps?怎么促进业务提升?

智能运维aiops根因分析算法的概念是Gartner在2016年率先提出,当初的英文全称为Algorithmic IT Operations,意指基于算法的IT运维。随着人工智能技术的发展,2018年Gartner将其英文全称更改为Artificial Intelligence for IT Operations,表明人工智能在IT运维领域的应用。至今短短六年,其概念还在不断融入新的认知。
当前IT运维难度增加,依靠人力堆积的传统方式运维已经无法满足数字化时代对IT运维的要求,借助更先进工具和技术手段成为应对这些挑战的必然选择。数据中心面临着从制度和流程为主驱动的时代,快速向数据与算法为主驱动的智能运维时代迈进。智能运维,已然成为迎接挑战不可或缺的科技力量和解决方案。
AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。AIOps智能运维可以将全栈式的运维数据进行集中化管理,不同数据领域也可以进行智能算法根因定位。其次它可以从业务场景进行跟踪,aiops根因分析算法了解交易路径,对于数据进行智能分析与预测。所以智能运维是一种全新的数字化运维能力,可以配合企业的数字化转型,保障企业的业务应用能够安全稳定且高效的运行。

为什么很多大型企业都在采用AIOps?

这是因为目前aiops根因分析算法,IT运维管理面临着两难境地的巨大挑战,一方面要降低成本,另一方面其复杂度又不断攀升。主要体现在数据量巨大、数据类型繁多和数据生成速度快三个维度:

IT基础架构和应用程序产生的数据量快速增长(年增长2-3倍)

机器和人工生成的数据类型越来越多(例如指标、日志、网络数据和知识管理文档)

由于采用了云架构和其他临时性的架构,数据生成速度不断提高,IT架构内变化速率也在提高

鉴于现代企业所需的洞察力,对这三个维度进行权衡的代价将相当巨大。因此,越来越多的客户对AIOps越来越感兴趣,并想通过大数据和机器学习技术来分析服务台的有效性,以此参与到故障和问题解决流程中去。IT组织还开始在DevOps环境中探索AIOps,将其作为持续集成/持续交付(CI/CD)周期的一部分,便于在部署之前预测潜在的问题,并检测潜在的安全问题。

AIOps分析的应用超越了其最初的使用范围,而成为IT运维中事件关联和分析的最佳解决方案。

如何通过AIOps手段增加运维效能和降低运维成本,对于企业来说都是很大的挑战。而致力于智能运维AIOps领域的擎创科技,已经为国内多家银行和证券用户成功部署夏洛克AIOps平台,助力企业运维降本增效:

强大自研数据采集器:支持Linux、Windows、AIX等多种系统,可采集除日志外的性能数据、网络数据、CMDB数据等各类数据aiops根因分析算法

创新的数据流处理方式:单数据流峰值每秒采集350000 条,可处理日增数据30TB;

人工智能算法:与复旦大学运维实验室共研10+种人工智能算法,异常检测和根因定位更容易。

目前,AIOps主要用于IT运维,且在企业中日益占据主导地位,而一些成熟的组织已正在利用该技术为企业领导者提供决策支撑。企业基础设施与运维负责人应该尽早启动AIOps平台部署工作,优化当前的性能分析,并在未来两年至五年内扩展至IT服务管理和自动化领域。

关于aiops根因分析算法和根因分析怎么做的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 aiops根因分析算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于根因分析怎么做、aiops根因分析算法的信息别忘了在本站进行查找喔。
上一篇:突发事件与危机管理 答案(突发事件处理与危机应对能力)
下一篇:外部世界如何访问容器? - 每天5分钟玩转 Docker 容器技术(37)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~