实时警报通知:微信告警通知的重要性解析
873
2023-03-07
亿级 ELK 日志平台构建实践
本篇主要讲工作中的真实经历,我们怎么打造亿级日志平台,同时手把手教大家建立起这样一套亿级 ELK 系统。
废话不多说,老司机们座好了,我们准备发车了~~~
整体架构
Kafka:数据缓冲队列。作为消息队列解耦了处理过程,同时提高了可扩展性。具有峰值处理能力,使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。
Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。
Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。
版本说明
Filebeat:6.2.4Kafka:2.11-1Logstash:6.2.4Elasticsearch:6.2.4Kibana:6.2.4相应的版本最好下载对应的插件。
具体实践
我们就以比较常见的 Nginx 日志来举例说明下,日志内容是 JSON 格式。
Filebeat
为什么用 Filebeat ,而不用原来的 Logstash 呢?
原因很简单,资源消耗比较大。
由于 Logstash 是跑在 JVM 上面,资源消耗比较大,后来作者用 GO 写了一个功能较少但是资源消耗也小的轻量级的 Agent 叫 Logstash-forwarder。
后来作者加入 elastic.co 公司, Logstash-forwarder 的开发工作给公司内部 GO 团队来搞,最后命名为 Filebeat。
Filebeat 需要部署在每台应用服务器上,可以通过 Salt 来推送并安装配置。
下载:
解压:
tar -zxvf filebeat-6.2.4-darwin-x86_64.tar.gzmv filebeat-6.2.4-darwin-x86_64 filebeatcd filebeat
tar -zxvf filebeat-6.2.4-darwin-x86_64.tar.gzmv filebeat-6.2.4-darwin-x86_64 filebeatcd filebeat
修改配置:修改 Filebeat 配置,支持收集本地目录日志,并输出日志到 Kafka 集群中。
$ vim fileat.ymlfilebeat.prospectors:- input_type: log paths: - /opt/logs/server/nginx.log json.keys_under_root: true json.add_error_key: true json.message_key: logoutput.kafka: hosts: ["192.168.0.1:9092,192.168.0.2:9092,192.168.0.3:9092"] topic: 'nginx'
$ vim fileat.ymlfilebeat.prospectors:- input_type: log paths: - /opt/logs/server/nginx.log json.keys_under_root: true json.add_error_key: true json.message_key: logoutput.kafka: hosts: ["192.168.0.1:9092,192.168.0.2:9092,192.168.0.3:9092"] topic: 'nginx'
Filebeat 6.0 之后一些配置参数变动比较大,比如 document_type 就不支持,需要用 fields 来代替等等。
启动:
$ ./filebeat -e -c filebeat.yml
$ ./filebeat -e -c filebeat.yml
Kafka
生产环境中 Kafka 集群中节点数量建议为(2N + 1 )个,这边就以 3 个节点举例。
下载:
直接到官网下载 Kafka。
解压:
tar -zxvf kafka_2.11-1.0.0.tgzmv kafka_2.11-1.0.0 kafkacd kafka
tar -zxvf kafka_2.11-1.0.0.tgzmv kafka_2.11-1.0.0 kafkacd kafka
修改 ZooKeeper 配置:
修改 ZooKeeper 配置,搭建 ZooKeeper 集群,数量 ( 2N + 1 ) 个。
ZooKeeper 集群建议采用 Kafka 自带,减少网络相关的因素干扰。
$ vim zookeeper.propertiestickTime=2000dataDir=/opt/zookeeperclientPort=2181maxClientCnxns=50initLimit=10syncLimit=5server.1=192.168.0.1:2888:3888server.2=192.168.0.2:2888:3888server.3=192.168.0.3:2888:3888
$ vim zookeeper.propertiestickTime=2000dataDir=/opt/zookeeperclientPort=2181maxClientCnxns=50initLimit=10syncLimit=5server.1=192.168.0.1:2888:3888server.2=192.168.0.2:2888:3888server.3=192.168.0.3:2888:3888
ZooKeeper data 目录下面添加 myid 文件,内容为代表 ZooeKeeper 节点 id (1,2,3),并保证不重复。
$ vim /opt/zookeeper/myid1
$ vim /opt/zookeeper/myid1
启动 ZooKeeper 节点:
分别启动 3 台 ZooKeeper 节点,保证集群的高可用。
$ ./zookeeper-server-start.sh -daemon ./config/zookeeper.properties
$ ./zookeeper-server-start.sh -daemon ./config/zookeeper.properties
修改 Kafka 配置:
Kafka 集群这边搭建为 3 台,可以逐个修改 Kafka 配置,需要注意其中 broker.id 分别 (1,2,3)。
$ vim ./config/server.propertiesbroker.id=1port=9092host.name=192.168.0.1num.replica.fetchers=1log.dirs=/opt/kafka_logsnum.partitions=3zookeeper.connect=192.168.0.1: 192.168.0.2: 192.168.0.3:2181zookeeper.connection.timeout.ms=6000zookeeper.sync.time.ms=2000num.io.threads=8num.network.threads=8queued.max.requests=16fetch.purgatory.purge.interval.requests=100producer.purgatory.purge.interval.requests=100delete.topic.enable=true
$ vim ./config/server.propertiesbroker.id=1port=9092host.name=192.168.0.1num.replica.fetchers=1log.dirs=/opt/kafka_logsnum.partitions=3zookeeper.connect=192.168.0.1: 192.168.0.2: 192.168.0.3:2181zookeeper.connection.timeout.ms=6000zookeeper.sync.time.ms=2000num.io.threads=8num.network.threads=8queued.max.requests=16fetch.purgatory.purge.interval.requests=100producer.purgatory.purge.interval.requests=100delete.topic.enable=true
启动 Kafka 集群:
分别启动 3 台 Kafka 节点,保证集群的高可用。
$ ./bin/kafka-server-start.sh -daemon ./config/server.properties
$ ./bin/kafka-server-start.sh -daemon ./config/server.properties
查看 topic 是否创建成功。
$ bin/kafka-topics.sh --list --zookeeper localhost:2181nginx
$ bin/kafka-topics.sh --list --zookeeper localhost:2181nginx
监控 Kafka Manager:
Kafka-manager 是 Yahoo 公司开源的集群管理工具。
如果遇到 Kafka 消费不及时的话,可以通过到具体 cluster 页面上,增加 partition。Kafka 通过 partition 分区来提高并发消费速度。
Logstash
Logstash 提供三大功能:
INPUT 进入FILTER 过滤功能OUTPUT 出去
如果使用 Filter 功能的话,强烈推荐大家使用 Grok debugger 来预先解析日志格式。
下载:
解压重命名:
$ tar -zxvf logstash-6.2.4.tar.gz$ mv logstash-6.2.4 logstash
$ tar -zxvf logstash-6.2.4.tar.gz$ mv logstash-6.2.4 logstash
修改 Logstash 配置:修改 Logstash 配置,使之提供 indexer 的功能,将数据插入到 Elasticsearch 集群中。
$ vim nginx.confinput { kafka { type => "kafka" bootstrap_servers => "192.168.0.1:2181,192.168.0.2:2181,192.168.0.3:2181" topics => "nginx" group_id => "logstash" consumer_threads => 2 }}output { elasticsearch { host => ["192.168.0.1","192.168.0.2","192.168.0.3"] port => "9300" index => "nginx-%{+YYYY.MM.dd}" }}
$ vim nginx.confinput { kafka { type => "kafka" bootstrap_servers => "192.168.0.1:2181,192.168.0.2:2181,192.168.0.3:2181" topics => "nginx" group_id => "logstash" consumer_threads => 2 }}output { elasticsearch { host => ["192.168.0.1","192.168.0.2","192.168.0.3"] port => "9300" index => "nginx-%{+YYYY.MM.dd}" }}
启动 Logstash:
$ ./bin/logstash -f nginx.conf
$ ./bin/logstash -f nginx.conf
Elasticsearch
下载:
解压:
$ tar -zxvf elasticsearch-6.2.4.tar.gz$ mv elasticsearch-6.2.4.tar.gz elasticsearch
$ tar -zxvf elasticsearch-6.2.4.tar.gz$ mv elasticsearch-6.2.4.tar.gz elasticsearch
修改配置:
$ vim config/elasticsearch.ymlcluster.name: es node.name: es-node1network.host: 192.168.0.1discovery.zen.ping.unicast.hosts: ["192.168.0.1"]discovery.zen.minimum_master_nodes: 1
$ vim config/elasticsearch.ymlcluster.name: es node.name: es-node1network.host: 192.168.0.1discovery.zen.ping.unicast.hosts: ["192.168.0.1"]discovery.zen.minimum_master_nodes: 1
启动:
通过 -d 来后台启动。
$ ./bin/elasticsearch -d
$ ./bin/elasticsearch -d
控制台:
Cerebro 这个名字大家可能觉得很陌生,其实过去它的名字叫 kopf !因为 Elasticsearch 5.0 不再支持 site plugin,所以 kopf 作者放弃了原项目,另起炉灶搞了 cerebro,以独立的单页应用形式,继续支持新版本下 Elasticsearch 的管理工作。
注意点:
Kibana
下载:
解压:
$ tar -zxvf kibana-6.2.4-darwin-x86_64.tar.gz$ mv kibana-6.2.4-darwin-x86_64.tar.gz kibana
$ tar -zxvf kibana-6.2.4-darwin-x86_64.tar.gz$ mv kibana-6.2.4-darwin-x86_64.tar.gz kibana
修改配置:
启动 Kibana:
$ nohup ./bin/kibana &
$ nohup ./bin/kibana &
界面展示:
总结
综上,通过上面部署命令来实现 ELK 的整套组件,包含了日志收集、过滤、索引和可视化的全部流程,基于这套系统实现分析日志功能。同时,通过水平扩展 Kafka、Elasticsearch 集群,可以实现日均亿级的日志实时处理。
发表评论
暂时没有评论,来抢沙发吧~