本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈智能运维机器学习方法,以及智能运维技术对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享智能运维机器学习方法的知识,其中也会对智能运维技术进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
智能运维与传统运维方式有什么区别?
传统的运维方式在监控、问题发现、告警以及故障处理等各个环节均存在明显不足,需要大量依赖人的经验,并且在数据采集、异常诊断分析、故障处理的效率等方面有待提高。这个时候智能运维就应运而生了,智能运维是将人工智能的能力与运维相结合,通过机器学习的方法来提升运维效率。总体来说AIOps比传统运维方式效率高,数据采集更准确,更智能。听云一直在AIOps探索的道路上,经过13年的技术深耕,早已是行业内的领先者,合作的企业更是多达8000家,覆盖的企业有金融、银行、政府、教育等等。
什么是AIOps智能运维?
智能运维AIOps平台,往往是通过大数据、机器学习和可视化的方式让IT运维工作变得更高效。企业基础设施与运维负责人应该尽早启动AIOps平台部署工作,优化当前的性能分析,并在未来两年至五年内扩展至IT服务管理和自动化领域。
AIOps平台是将大数据与机器学习功能相结合的软件系统,主要对IT系统不断产生的数据量、类型和速度进行拓展性的采集和分析,以支撑IT运维的主要功能。该平台能够同时使用多个数据源、数据采集方法、数据分析及演示技术。
AIOps可以应用到广泛的IT运维流程及场景中,包括性能分析、异常检测、事件关联分析、IT服务管理和自动化。
核心功能包括:
从各种数据源中提取数据
对提取的数据进行实时分析
对存储的数据进行历史分析
提供数据访问接口
存储采集数据
使用机器学习技术
根据分析结果启动操作
AIOps在企业中日益占据主导地位,而一些成熟的组织已正在利用该技术为企业领导者提供决策支撑。
IT运维平台算法背后的两大“神助攻”
智能运维(AIops)是目前 IT 运维领域最火热的词汇,全称是 Algorithmic IT operations platforms,正规翻译是『基于算法的 IT 运维平台』,直观可见算法是智能运维的核心要素之一。
本文主要谈算法对运维的作用,涉及异常检测和归因分析两方面,围绕运维系统Kale 中 skyline、Oculus 模块、Opprentice 系统、Granger causality(格兰杰因果关系)、FastDTW 算法等细节展开。
一、异常检测
异常检测,是运维工程师们最先可能接触的地方了。毕竟监控告警是所有运维工作的基础。设定告警阈值是一项耗时耗力的工作,需要运维人员在充分了解业务的前提下才能进行,还得考虑业务是不是平稳发展状态,否则一两周改动一次,运维工程师绝对是要发疯的。
如果能将这部分工作交给算法来解决,无疑是推翻一座大山。这件事情,机器学习当然可以做到。但是不用机器学习,基于数学统计的算法,同样可以,而且效果也不差。
异常检测之Skyline异常检测模块
2013年,Etsy 开源了一个内部的运维系统,叫 Kale。其中的 skyline 部分,就是做异常检测的模块, 它提供了 9 种异常检测算法 :
first_hour_average、
simple_stddev_from_moving_average、
stddev_from_moving_average、
mean_subtraction_cumulation、
least_squares
histogram_bins、
grubbs、
median_absolute_deviation、
Kolmogorov-Smirnov_test
简要的概括来说,这9种算法分为两类:
从正态分布入手:假设数据服从高斯分布,可以通过标准差来确定绝大多数数据点的区间;或者根据分布的直方图,落在过少直方里的数据就是异常;或者根据箱体图分析来避免造成长尾影响。
从样本校验入手:采用 Kolmogorov-Smirnov、Shapiro-Wilk、Lilliefor 等非参数校验方法。
这些都是统计学上的算法,而不是机器学习的事情。当然,Etsy 这个 Skyline 项目并不是异常检测的全部。
首先,这里只考虑了一个指标自己的状态,从纵向的时序角度做异常检测。而没有考虑业务的复杂性导致的横向异常。其次,提供了这么多种算法,到底一个指标在哪种算法下判断的更准?这又是一个很难判断的事情。
问题一: 实现上的抉择。同样的样本校验算法,可以用来对比一个指标的当前和历史情况,也可以用来对比多个指标里哪个跟别的指标不一样。
问题二: Skyline 其实自己采用了一种特别朴实和简单的办法来做补充——9 个算法每人一票,投票达到阈值就算数。至于这个阈值,一般算 6 或者 7 这样,即占到大多数即可。
异常检测之Opprentice系统
作为对比,面对相同的问题,百度 SRE 的智能运维是怎么处理的。在去年的 APMcon 上,百度工程师描述 Opprentice 系统的主要思想时,用了这么一张图:
Opprentice 系统的主体流程为:
KPI 数据经过各式 detector 计算得到每个点的诸多 feature;
通过专门的交互工具,由运维人员标记 KPI 数据的异常时间段;
采用随机森林算法做异常分类。
其中 detector 有14种异常检测算法,如下图:
我们可以看到其中很多算法在 Etsy 的 Skyline 里同样存在。不过,为避免给这么多算法调配参数,直接采用的办法是:每个参数的取值范围均等分一下——反正随机森林不要求什么特征工程。如,用 holt-winters 做为一类 detector。holt-winters 有α,β,γ 三个参数,取值范围都是 [0, 1]。那么它就采样为 (0.2, 0.4, 0.6, 0.8),也就是 4 ** 3 = 64 个可能。那么每个点就此得到 64 个特征值。
异常检测之
Opprentice 系统与 Skyline 很相似
Opprentice 系统整个流程跟 skyline 的思想相似之处在于先通过不同的统计学上的算法来尝试发现异常,然后通过一个多数同意的方式/算法来确定最终的判定结果。
只不过这里百度采用了一个随机森林的算法,来更靠谱一点的投票。而 Etsy 呢?在 skyline 开源几个月后,他们内部又实现了新版本,叫 Thyme。利用了小波分解、傅里叶变换、Mann-whitney 检测等等技术。
另外,社区在 Skyline 上同样做了后续更新,Earthgecko 利用 Tsfresh 模块来提取时序数据的特征值,以此做多时序之间的异常检测。我们可以看到,后续发展的两种 Skyline,依然都没有使用机器学习,而是进一步深度挖掘和调整时序相关的统计学算法。
开源社区除了 Etsy,还有诸多巨头也开源过各式其他的时序异常检测算法库,大多是在 2015 年开始的。列举如下:
Yahoo! 在去年开源的 egads 库。(Java)
Twitter 在去年开源的 anomalydetection 库。(R)
Netflix 在 2015 年开源的 Surus 库。(Pig,基于PCA)
其中 Twitter 这个库还被 port 到 Python 社区,有兴趣的读者也可以试试。
二、归因分析
归因分析是运维工作的下一大块内容,就是收到报警以后的排障。对于简单故障,应对方案一般也很简单,采用 service restart engineering~ 但是在大规模 IT 环境下,通常一个故障会触发或导致大面积的告警发生。如果能从大面积的告警中,找到最紧迫最要紧的那个,肯定能大大的缩短故障恢复时间(MTTR)。
这个故障定位的需求,通常被归类为根因分析(RCA,Root Cause Analysis)。当然,RCA 可不止故障定位一个用途,性能优化的过程通常也是 RCA 的一种。
归因分析之 Oculus 模块
和异常检测一样,做 RCA 同样是可以统计学和机器学习方法并行的~我们还是从统计学的角度开始。依然是 Etsy 的 kale 系统,其中除了做异常检测的 skyline 以外,还有另外一部分,叫 Oculus。而且在 Etsy 重构 kale 2.0 的时候,Oculus 被认为是1.0 最成功的部分,完整保留下来了。
Oculus 的思路,用一句话描述,就是:如果一个监控指标的时间趋势图走势,跟另一个监控指标的趋势图长得比较像,那它们很可能是被同一个根因影响的。那么,如果整体 IT 环境内的时间同步是可靠的,且监控指标的颗粒度比较细的情况下,我们就可能近似的推断:跟一个告警比较像的最早的那个监控指标,应该就是需要重点关注的根因了。
Oculus 截图如下:
这部分使用的 计算方式有两种:
欧式距离,就是不同时序数据,在相同时刻做对比。假如0分0秒,a和b相差1000,0分5秒,也相差1000,依次类推。
FastDTW,则加了一层偏移量,0分0秒的a和0分5秒的b相差1000,0分5秒的a和0分10秒的b也相差1000,依次类推。当然,算法在这个简单假设背后,是有很多降低计算复杂度的具体实现的,这里就不谈了。
唯一可惜的是 Etsy 当初实现 Oculus 是基于 ES 的 0.20 版本,后来该版本一直没有更新。现在停留在这么老版本的 ES 用户应该很少了。除了 Oculus,还有很多其他产品,采用不同的统计学原理,达到类似的效果。
归因分析之 Granger causality
Granger causality(格兰杰因果关系)是一种算法,简单来说它通过比较“已知上一时刻所有信息,这一时刻 X 的概率分布情况”和“已知上一时刻除 Y 以外的所有信息,这一时刻 X 的概率分布情况”,来判断 Y 对 X 是否存在因果关系。
可能有了解过一点机器学习信息的读者会很诧异了:不是说机器只能反应相关性,不能反应因果性的么?需要说明一下,这里的因果,是统计学意义上的因果,不是我们通常哲学意义上的因果。
统计学上的因果定义是:『在宇宙中所有其他事件的发生情况固定不变的条件下,如果一个事件 A 的发生与不发生对于另一个事件 B 的发生的概率有影响,并且这两个事件在时间上有先后顺序(A 前 B 后),那么我们便可以说 A 是 B 的原因。』
归因分析之皮尔逊系数
另一个常用的算法是皮尔逊系数。下图是某 ITOM 软件的实现:
我们可以看到,其主要元素和采用 FastDTW 算法的 Oculus 类似:correlation 表示相关性的评分、lead/lag 表示不同时序数据在时间轴上的偏移量。
皮尔逊系数在 R 语言里可以特别简单的做到。比如我们拿到同时间段的访问量和服务器 CPU 使用率:
然后运行如下命令:
acc_count<-scale(acc$acc_count,center=T,scale=T)
cpu<-scale(acc$cpuload5,center=T,scale=T)
cor.test(acc_count,cpu)
可以看到如下结果输出:
对应的可视化图形如下:
这就说明网站数据访问量和 CPU 存在弱相关,同时从散点图上看两者为非线性关系。因此访问量上升不一定会真正影响 CPU 消耗。
其实 R 语言不太适合嵌入到现有的运维系统中。那这时候使用 Elasticsearch 的工程师就有福了。ES 在大家常用的 metric aggregation、bucket aggregation、pipeline aggregation 之外,还提供了一种 matrix aggregation,目前唯一支持的 matrix_stats 就是采用了皮尔逊系数的计算,接口文档见:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-matrix-stats-aggregation.html
唯一需要注意的就是,要求计算相关性的两个字段必须同时存在于一个 event 里。所以没法直接从现成的 ES 数据中请求不同的 date_histogram,然后计算,需要自己手动整理一遍,转储回 ES 再计算。
饶琛琳,目前就职日志易,有十年运维工作经验。在微博担任系统架构师期间,负责带领11人的SRE团队。著有《网站运维技术与实践》、《ELKstack权威指南》,合译有《Puppet 3 Cookbook》、《Learning Puppet 4》。在众多技术大会上分享过自动化运维与数据分析相关主题。
智能运维是什么?
得益于IT外包服务的发达
智能运维机器学习方法,现在的运维已经不包括搬机器上架、接网线、安装操作系统等基础工作
智能运维机器学习方法,运维人员一般会从一台已安装好指定版本的操作系统、分配好IP地址和账号的服务器入手,工作范围大致包括
智能运维机器学习方法:服务器管理(操作系统层面,比如重启、下线)、软件包管理、代码上下线、日志管理和分析、监控(区分系统、业务)和告警、流量管理(分发、转移、降级、限流等),以及一些日常的优化、故障排查等。
随着业务的发展、服务器规模的扩大,才及云化(公有云和混合云)、虚拟化的逐步落实,运维工作就扩展到了容量管理、弹性(自动化)扩缩容、安全管理,以及(引入各种容器、开源框架带来的复杂度提高而导致的)故障分析和定位等范围。
听上去每一类工作都不简单。不过,好在这些领域都有成熟的解决方案、开源软件和系统,运维工作的重点就是如何应用好这些工具来解决问题。
传统的运维工作经过不断发展(服务器规模的不断扩大),大致经历了人工、工具和自动化、平台化和智能运维(AIOps)几个阶段。这里的AIOps不是指Artificial Intelligence for IT Operations,而是指Algorithmic IT Operations(基于Gartner的定义标准)。
基于算法的IT运维,能利用数据和算法提高运维的自动化程度和效率,比如将其用于告警收敛和合并、Root分析、关联分析、容量评估、自动扩缩容等运维工作中。
在Monitoring(监控)、Service Desk(服务台)、Automation(自动化)之上,利用大数据和机器学习持续优化,用机器智能扩展人类的能力极限,这就是智能运维的实质含义。
智能运维具体的落地方式,各团队也都在摸索中,较早见效的是在异常检测、故障分析和定位(有赖于业务系统标准化的推进)等方面的应用。智能运维平台逻辑架构如图所示。
智能运维平台逻辑架构图
智能运维决不是一个跳跃发展的过程,而是一个长期演进的系统,其根基还是运维自动化、监控、数据收集、分析和处理等具体的工程。人们很容易忽略智能运维在工程上的投入,认为只要有算法就可以了,其实工程能力和算法能力在这里同样重要。
智能运维需要解决的问题有:海量数据存储、分析、处理,多维度,多数据源,信息过载,复杂业务模型下的故障定位。这些难题是否会随着智能运维的深入应用而得到一定程度的解决呢
智能运维机器学习方法?我们会在下一篇文章中逐步展开这些问题,并提供一些解决方案。
本文选自《智能运维:从0搭建大规模分布式AIOps系统》,作者彭冬、朱伟、刘俊等,电子工业出版社2018年7月出版。
本书结合大企业的智能运维实践,全面完整地介绍智能运维的技术体系,让读者更加了解运维技术的现状和发展。同时,帮助运维工程师在一定程度上了解机器学习的常见算法模型,以及如何将它们应用到运维工作中。
AIOps时代到来了,我们要如何应对?
在当前数字化转型的浪潮下,企业 IT 运维方面的投资规模将逐步增加,IT 运维的关注方向也将逐步从自动化运维向智能化运维发展。伴随着企业规模扩大,业务模式更新,以及云计算、大数据、人工智能等新技术应用,AIOps智能运维能力已在科技、互联网、金融、电信等行业逐步落地应用,并呈现出多样化的发展趋势。
目前国内AIOps智能运维的发展现状是:
1. 多数企业近年来在运维方面的资金投入仍处于增长阶段。近 4 成企业运维方面年平均投资规模超5000 万元,投资规模在 5000 万元-1 亿元的企业占比 11.24%,1 亿元-5 亿元 的企业占比 13.45%。
2. 超半数企业在实现自动化运维、自动化部署的基础上进一步增强监控、运维智能化能力。 根据本次调查显示,61.21%的企业选择优先关注和投资 DevOps 自动化部署,52%的企 业选择优先关注和投资升级监控和 AIOps。
3. 智能运维已经在各行业逐步落地应用,特别是在科技、互联网、金融、电信几大领域应用效果十分显著。根据本次调查结果,科技和互联网行业受访者所在企业表示已建立了智能 运维平台并形成了相关评价体系分别占比 49.64%和 37.96%,其次是银行占比 28.99% 和电信企业占比 25.97%。
4. AIOps 仍处于初期发展阶段,受访者对目前 AIOps 能力水平的评价与期望超过其所在企业实际应用的情况。从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。
未来,AIOps 将是运维发展的必然趋势,也将是增长最快的方向。根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。
尤其对于中大型企业来说,企业的数字化转型成功与AIOps智能运维建设密不可分。基于这种情况,企业应该及早布局,才不会落于人后。
有人知道智能运维是什么?
作为企业数字化转型的重要手段,IT运维效率的高低会直接影响到业务的正常运转,业务数字化的加剧会造成严重的运维之殇,发现问题、根因定位、数据治理和运营分析都变得十分困难,越来越难以满足当前主动运营的要求。
智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。
关于智能运维机器学习方法和智能运维技术的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
智能运维机器学习方法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于智能运维技术、智能运维机器学习方法的信息别忘了在本站进行查找喔。
暂时没有评论,来抢沙发吧~