本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈性能测试怎么做,以及性能测试具体怎么测对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享性能测试怎么做的知识,其中也会对性能测试具体怎么测进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
性能测试到底该怎么做?
作为一名开发者,我们最长听到的就是编程界的三高:
高性能、高并发、高可用。
听起来非常高大上,但是性能到底如何呢?又该如何评定呢?
这次我们谈一谈性能测试,看一看到底什么样才叫做高性能。
本文主要从以下几个方面进行讨论。
(1)性能测试是什么?
(2)为什么需要性能测试?
(3)性能测试如何做?
(4)有哪些性能测试的工具
老马曾经说过,你想理解一件事物,首先必须先定义它。
这里直接引用一下百科中的定义:
性能测试的定义也不难理解,往往定义本身阐述了性能测试的作用。
如果你是一名开发、测试,平时接手过不少需求,可能性能测试接触的也不多。
每一个需求,都有对应的功能性需求和肺功能性需求。
功能性需求是产品需求文档中最直接的,需要实现的功能目标。简称,能用就行。
非功能性需求则要宽泛的多,架构设计是否合理?是否便于后期拓展?是否便于监控?代码实现是否优雅?文档注释是否完整?
就像你写了一只鸟,鸟头做螺旋桨非能飞起来,但是在架构设计上可能是不合理的。
飞起来
一个查询功能,用户点击查询,10S 种才返回数据,功能上是满足的,但是性能上是不能接受的。
线上的交易功能平时各方面都很棒,节假日高峰期直接系统就瘫痪了。
那如何避免这些问题出现在生产上呢?
这就需要上线之前,首先做好对应的性能测试,避免再生产上出现问题,带来严重的生产事故。
性能要高,性能要硬,性能测试,又高又硬!
又高又硬
做一件事情之前,我们首先要确定好自己的目标。
性能测试,到底要测试什么?
有些类似于开发过程中的需求分析,常见的测试指标如下。
响应时间是指某个请求或操作从发出到接收到反馈所消耗的时间,包括应用服务器(客户端)处理时间、网络传输时间以及数据库服务器处理时间。
作为用户而言,在页面点击查询,等待了多久才能获取结果,这个就是响应时间。
用户不关心你后端经过了多少个服务,慢就是原罪。
对于微服务系统,链路监控就显得比较重要。可以帮助我们快速定位到底慢在哪里。
TPS(Transaction Per Second)是指单位时间(每秒)系统处理的事务量。
我看网上还有很多类似的概念:点击量/点击率、吞吐量/吞吐率、PV/UV,这里不做赘述。
个人看来本质上 TPS/QPS 就是去压测你应用的极限,当访问量较大的时候,程序能否活下来?
这里主要涉及到两个概念:高性能和高可用。
我们后面会简单讨论下这两点。
明确了测试指标之后,就需要进行测试的准备。
环境准备:比如你想压测数据库,那就需要准备对应配置的数据库资源。
脚本的准备:数据初始化脚本,调用脚本等。
这个可以类比开发过程中的代码开发。
ps: 性能压测一般不是很常用,所以环境准备流程会比较长,这一点需要注意。
当进行测试之后,测试的结果一定要给出一份报告出来。
是否通过压测要求?
最高的 QPS 是多少?
这样开发可以根据这份报告进行相应的优化。
提升性能的内容写一本书也不为过,这里简单罗列一些最常用的几点:
(1)慢 SQL
一般程序如果响应时间较长,可以首先看一下慢 SQL。
看下是否需要增加索引,或者进行 SQL 优化。
(2)缓存
针对查询,性能提升最显著的就是引入缓存。
当然,引入缓存会使架构变得复杂,这一点要结合自己的实际业务。
(3)硬件升级
如果程序优化的空间比较小,可以考虑升级一下硬件资源。
比如服务器配置翻倍,数据库配置翻倍。
什么?你说公司没钱升级?
没钱升级做什么压测?
这个时候测试报告的作用就显露了,直接用数据说话。
直接说 QPS 达不到生产要求,程序优化的空间很小,推荐硬件升级配置,升级到多少。
做人,要以德服人。
做测试,要用数据说话。
以德服人
测试最常用的工具当属 jmeter。
除此之外,还有一些其他的工具:
LoadRunner、QALoad、SilkPerformer和Rational Performance Tester。
下面对几个工具做下简单介绍
Apache JMeter 可以用于测试静态和动态资源(Web动态应用程序)的性能。
它可以用于模拟服务器、服务器组、网络或对象上的负载,以测试其强度或分析不同负载类型下的总体性能。
将负载测试集成到开发工具中:IDE、jUnit、nUnit、Jenkins、Selenium和Microsoft Visual Studio。
从12.55版本开始,您可以运行您的JMeter脚本,并在任何性能测试中集成JMeter和附加的脚本类型。
ps: 这个设计理念就非常好,可以和成熟的工具进行整合。站在巨人的肩膀上。
QALoad是客户/服务器系统、企业资源配置(ERP)和电子商务应用的自动化负载测试工具。
QALoad可以模拟成百上千的用户并发执行关键业务而完成对应用程序的测试,并针对所发现问题对系统性能进行优化,确保应用的成功部署。
ps: 这个工具本人没有接触过。
SilkPerformerV可以让你在使用前,就能够预测企业电子商务环境的行为—不受电子商务应用规模和复杂性影响。
可视化的用户化、负载条件下可视化的内容校验、实时的性能监视和强大的管理报告可以帮助您迅速将问题隔离,这样,通过最小化测试周期、优化性能以及确保可伸缩性,加快了投入市场的时间,并保证了系统的可靠性。
作为 DevOps 方法的一部分,IBM Rational Performance Tester 帮助软件测试团队更早、更频繁地进行测试。
它验证 Web 和服务器应用程序的可扩展性,确定系统性能瓶颈的存在和原因,并减少负载测试。
您的软件测试团队可以快速执行性能测试,分析负载对应用程序的影响。
ps: 这一款工具有 IBM 提供,质量值得信赖。
这么多工具可供使用,相信读到这里的小伙伴已经找到了自己心仪的测试工具。
别急,下面专门为做 java 开发的小伙伴们推荐一款性能测试工具。
男人有男人的浪漫,开发者当然也要有开发者的浪漫。
【男人的浪.jpg】
作为一名开发者,老马平时单元测试使用 junit 最多。
所以一直希望找到一款基于 junit 的性能压测工具,后来也确实找到了。
@JunitPerfConfig 指定测试时的属性配置。(必填项)
使用如下:
@JunitPerfRequire 指定测试时需要达到的要求。(选填项)
使用如下:
对应的测试报告生成方式也是多样的,也允许用户自定义。
基于控台日志:
或者基于 HTML:
junitperf
本文对性能测试做了最基本的介绍,让小伙伴们对性能压测有一个最基本的理解。
测试和开发一样,都是一件费时费力,而且需要认真做才能做好的事情,其中的学问不是一篇就能说清的。
性能测试工具也比较多,本文重点介绍了专门为 java 开发者打造的 junitperf 工具。
下一节我们将从源码角度,讲解一下 junitperf 的实现原理。
我是老马,期待与你的下次重逢。
开源地址:https://github.com/houbb/junitperf
性能测试包括哪些方面
性能测试包括负载测试和压力测试。
性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。负载测试和压力测试都属于性能测试,两者可以结合进行。通过负载测试,确定在各种工作负载下系统的性能,目标是测试当负载逐渐增加时,系统各项性能指标的变化情况。压力测试是通过确定一个系统的瓶颈或者不能接受的性能点,来获得系统能提供的最大服务级别的测试。
性能测试在软件的质量保证中起着重要的作用,它包括的测试内容丰富多样。中国软件评测中心将性能测试概括为三个方面:应用在客户端性能的测试、应用在网络上性能的测试和应用在服务器端性能的测试。通常情况下,三方面有效、合理的结合,可以达到对系统性能全面的分析和瓶颈的预测。
性能测试的方法
对于企业应用程序,有许多进行性能测试的方法,其中一些方法实行起来要比其他方法困难。所要进行的性能测试的类型取决于想要达到的结果。例如,对于可再现性,基准测试是最好的方法。而要从当前用户负载的角度测试系统的上限,则应该使用容量规划测试。本文将介绍几种设置和运行性能测试的方法,并讨论这些方法的区别。
如果不进行合理的规划,对J2EE应用程序进行性能测试将会是一项令人望而生畏且有些混乱的任务。因为对于任何的软件开发流程,都必须收集需求、理解业务需要,并在进行实际测试之前设计出正式的进度表。性能测试的需求由业务需要驱动,并由一组用例阐明。这些用例可以基于历史数据(例如,服务器一周的负载模式)或预测的近似值。弄清楚需要测试的内容之后,就需要知道如何进行测试了。
在开发阶段前期,应该使用基准测试来确定应用程序中是否出现性能倒退。基准测试可以在一个相对短的时间内收集可重复的结果。进行基准测试的最好方法是,每次测试改变一个且只改变一个参数。例如,如果想知道增加JVM内存是否会影响应用程序的性能,就逐次递增JVM内存(例如,从1024 MB增至1224 MB,然后是1524 MB,最后是2024 MB),在每个阶段收集结果和环境数据,记录信息,然后转到下一阶段。这样在分析测试结果时就有迹可循。下一小节我将介绍什么是基准测试,以及运行基准测试的最佳参数。
开发阶段后期,在应用程序中的bug已经被解决,应用程序达到一种稳定状态之后,可以运行更为复杂的测试,确定系统在不同的负载模式下的表现。这些测试被称为容量规划测试、渗入测试(soak test)、峰谷测试(peak-rest test),它们旨在通过测试应用程序的可靠性、健壮性和可伸缩性来测试接近于现实世界的场景。对于下面的描述应该从抽象的意义上理解,因为每个应用程序的使用模式都是不同的。例如,容量规划测试通常都使用较缓慢的ramp-up(下文有定义),但是如果应用程序在一天之中的某个时段中有快速突发的流量,那么自然应该修改测试以反映这种情况。但是,要记住,因为更改了测试参数(比如ramp-up周期或用户的考虑时间(think-time)),测试的结果肯定也会改变。一个不错的方法是,运行一系列的基准测试,确立一个已知的可控环境,然后再对变化进行比较。 基准测试的关键是要获得一致的、可再现的结果。可再现的结果有两个好处:减少重新运行测试的次数;对测试的产品和产生的数字更为确信。使用的性能测试工具可能会对测试结果产生很大影响。假定测试的两个指标是服务器的响应时间和吞吐量,它们会受到服务器上的负载的影响。服务器上的负载受两个因素影响:同时与服务器通信的连接(或虚拟用户)的数目,以及每个虚拟用户请求之间的考虑时间的长短。很明显,与服务器通信的用户越多,负载就越大。同样,请求之间的考虑时间越短,负载也越大。这两个因素的不同组合会产生不同的服务器负载等级。记住,随着服务器上负载的增加,吞吐量会不断攀升,直到到达一个点。
注意,吞吐量以稳定的速度增长,然后在某一个点上稳定下来。
在某一点上,执行队列开始增长,因为服务器上所有的线程都已投入使用,传入的请求不再被立即处理,而是放入队列中,当线程空闲时再处理。
注意,最初的一段时间,执行队列的长度为零,然后就开始以稳定的速度增长。这是因为系统中的负载在稳定增长,虽然最初系统有足够的空闲线程去处理增加的负载,最终它还是不能承受,而必须将其排入队列。
当系统达到饱和点,服务器吞吐量保持稳定后,就达到了给定条件下的系统上限。但是,随着服务器负载的继续增长,系统的响应时间也随之延长,虽然吞吐量保持稳定。
注意,在执行队列(图2)开始增长的同时,响应时间也开始以递增的速度增长。这是因为请求不能被及时处理。
为了获得真正可再现的结果,应该将系统置于相同的高负载下。为此,与服务器通信的虚拟用户应该将请求之间的考虑时间设为零。这样服务器会立即超载,并开始构建执行队列。如果请求(虚拟用户)数保持一致,基准测试的结果应该会非常精确,完全可以再现。
您可能要问的一个问题是:“如何度量结果?”对于一次给定的测试,应该取响应时间和吞吐量的平均值。精确地获得这些值的唯一方法是一次加载所有的用户,然后在预定的时间段内持续运行。这称为“flat”测试。
与此相对应的是“ramp-up”测试。
ramp-up测试中的用户是交错上升的(每几秒增加一些新用户)。ramp-up测试不能产生精确和可重现的平均值,这是因为由于用户的增加是每次一部分,系统的负载在不断地变化。因此,flat运行是获得基准测试数据的理想模式。
这不是在贬低ramp-up测试的价值。实际上,ramp-up测试对找出以后要运行的flat测试的范围非常有用。ramp-up测试的优点是,可以看出随着系统负载的改变,测量值是如何改变的。然后可以据此选择以后要运行的flat测试的范围。
Flat测试的问题是系统会遇到“波动”效果。
注意波动的出现,吞吐量不再是平滑的。
这在系统的各个方面都有所体现,包括CPU的使用量。
注意,每隔一段时间就会出现一个波形。CPU使用量不再是平滑的,而是有了像吞吐量图那样的尖峰。
此外,执行队列也承受着不稳定的负载,因此可以看到,随着系统负载的增加和减少,执行队列也在增长和缩减。
注意,每隔一段时间就会出现一个波形。执行队列曲线与上面的CPU使用量图非常相似。
最后,系统中事务的响应时间也遵循着这个波动模式。
注意,每隔一段时间就会出现一个波形。事务的响应时间也与上面的图类似,只不过其效果随着时间的推移逐渐减弱。
当测试中所有的用户都同时执行几乎相同的操作时,就会发生这种现象。这将会产生非常不可靠和不精确的结果,所以必须采取一些措施防止这种情况的出现。有两种方法可以从这种类型的结果中获得精确的测量值。如果测试可以运行相当长的时间(有时是几个小时,取决于用户的操作持续的时间),最后由于随机事件的本性使然,服务器的吞吐量会被“拉平”。或者,可以只选取波形中两个平息点之间的测量值。该方法的缺点是可以捕获数据的时间非常短。 对于性能规划类型的测试来说,其目标是找出,在特定的环境下,给定应用程序的性能可以达到何种程度。此时可重现性就不如在基准测试中那么重要了,因为测试中通常都会有随机因子。引入随机因子的目的是为了尽量模拟具有真实用户负载的现实世界应用程序。通常,具体的目标是找出系统在特定的服务器响应时间下支持的当前用户的最大数。例如,您可能想知道:如果要以5秒或更少的响应时间支持8,000个当前用户,需要多少个服务器?要回答这个问题,需要知道系统的更多信息。
要确定系统的容量,需要考虑几个因素。通常,服务器的用户总数非常大(以十万计),但是实际上,这个数字并不能说明什么。真正需要知道的是,这些用户中有多少是并发与服务器通信的。其次要知道的是,每个用户的“考虑时间”即请求间时间是多少。这非常重要,因为考虑时间越短,系统所能支持的并发用户越少。例如,如果用户的考虑时间是1秒,那么系统可能只能支持数百个这样的并发用户。但是,如果用户的考虑时间是30秒,那么系统则可能支持数万个这样的并发用户(假定硬件和应用程序都是相同的)。在现实世界中,通常难以确定用户的确切考虑时间。还要注意,在现实世界中,用户不会精确地按照间隔时间发出请求。
于是就引入了随机性。如果知道普通用户的考虑时间是5秒,误差为20%,那么在设计负载测试时,就要确保请求间的时间为5×(1 +/- 20%)秒。此外,可以利用“调步”的理念向负载场景中引入更多的随机性。它是这样的:在一个虚拟用户完成一整套的请求后,该用户暂停一个设定的时间段,或者一个小的随机时间段(例如,2×(1 +/- 25%)秒),然后再继续执行下一套请求。将这两种随机化方法运用到测试中,可以提供更接近于现实世界的场景。
进行实际的容量规划测试了。接下来的问题是:如何加载用户以模拟负载状态?最好的方法是模拟高峰时间用户与服务器通信的状况。这种用户负载状态是在一段时间内逐步达到的吗?如果是,应该使用ramp-up类型的测试,每隔几秒增加x个用户。或者,所有用户是在一个非常短的时间内同时与系统通信?如果是这样,就应该使用flat类型的测试,将所有的用户同时加载到服务器。两种不同类型的测试会产生没有可比性的不同测试。例如,如果进行ramp-up类型的测试,系统可以以4秒或更短的响应时间支持5,000个用户。而执行flat测试,您会发现,对于5,000个用户,系统的平均响应时间要大于4秒。这是由于ramp-up测试固有的不准确性使其不能显示系统可以支持的并发用户的精确数字。以门户应用程序为例,随着门户规模的扩大和集群规模的扩大,这种不确定性就会随之显现。
这不是说不应该使用ramp-up测试。对于系统负载在一段比较长的时间内缓慢增加的情况,ramp-up测试效果还是不错的。这是因为系统能够随着时间不断调整。如果使用快速ramp-up测试,系统就会滞后,从而报告一个较相同用户负载的flat测试低的响应时间。那么,什么是确定容量的最好方法?结合两种负载类型的优点,并运行一系列的测试,就会产生最好的结果。例如,首先使用ramp-up测试确定系统可以支持的用户范围。确定了范围之后,以该范围内不同的并发用户负载进行一系列的flat测试,更精确地确定系统的容量。 渗入测试是一种比较简单的性能测试。渗入测试所需时间较长,它使用固定数目的并发用户测试系统的总体健壮性。这些测试将会通过内存泄漏、增加的垃圾收集(GC)或系统的其他问题,显示因长时间运行而出现的任何性能降低。测试运行的时间越久,您对系统就越了解。运行两次测试是一个好主意——一次使用较低的用户负载(要在系统容量之下,以便不会出现执行队列),一次使用较高的负载(以便出现积极的执行队列)。
测试应该运行几天的时间,以便真正了解应用程序的长期健康状况。要确保测试的应用程序尽可能接近现实世界的情况,用户场景也要逼真(虚拟用户通过应用程序导航的方式要与现实世界一致),从而测试应用程序的全部特性。确保运行了所有必需的监控工具,以便精确地监测并跟踪问题。 峰谷测试兼有容量规划ramp-up类型测试和渗入测试的特征。其目标是确定从高负载(例如系统高峰时间的负载)恢复、转为几乎空闲、然后再攀升到高负载、再降低的能力。
实现这种测试的最好方法就是,进行一系列的快速ramp-up测试,继之以一段时间的平稳状态(取决于业务需求),然后急剧降低负载,此时可以令系统平息一下,然后再进行快速的ramp-up;反复重复这个过程。这样可以确定以下事项:第二次高峰是否重现第一次的峰值?其后的每次高峰是等于还是大于第一次的峰值?在测试过程中,系统是否显示了内存或GC性能降低的有关迹象?测试运行(不停地重复“峰值/空闲”周期)的时间越长,您对系统的长期健康状况就越了解。
我是新手,刚接触性能测试,实际工作中的性能测试的流程怎样的呢?
我在TestBird从事自动化测试等工作
性能测试怎么做,对性能测试也有一些经验
性能测试怎么做,性能测试流程其实网上和专业的书都有介绍,我把我现在性能测试流程简单描述一下:
1.制定测试计划和策略
可能很多人觉得这一步很琐碎,其实我觉得这一步很关键的,决定着之后测试的走向。
2.准备测试环境
包括硬件、网络、操作系统,中间件,数据库、测试数据,监控工具等。
3.录制脚本,优化,调试
录制、增强、优化脚本的目的是使模拟用户操作步骤更逼真。
4.根据场景执行脚本,分析测试结果
就根据你已经设计好的场景执行脚本,记录测试结果,并和开发人员,DBA等一起定位性能缺陷。
5.性能调优后,回归测试
如果有性能问题,开发人员,DBA性能调优后回归测试。
伺服电机系统性能测试怎么做?
首先先测试一下电机,任何电路也不用连接,把电机的三根线任意两根短路在一起,用手转动电机轴,感觉起来有阻力,那就可以。第二步,把驱动器按图纸接上电源(例如用了调压器,从100V调到220V,怕驱动器是100V的),通电,驱动器正常,有错误信息显示,对照说明书,是显示了编码器有故障的错误,这个也正常,还没有连接编码器呢。第三步,接上编码器,再开机,没有任何错误显示了。第四步,按照说明书上设置驱动器。买永磁电机综合测试系统不如选择河北优安捷,这里的技术先进,性能可靠,精度准确,7*24小时专业客服为你服务,有从业多年的售后服务人员为您进行售后服务,还有定子综合测试系统和型式试验测试系统等专业系统,还有高科技的特殊试验台,技术精湛让您放心。【点击了解更多产品信息】
成型机、涨型机、拉型机其实是一种机器,它主要目的是把绕线机绕制的立绕梭型线圈或平绕梭型线圈拉成框行线圈,框型线圈以电机定子铁心的内外圆为标准,组成向心式的有角度的线圈,绕制梭型线圈需技工2人即可完成,而拉(涨)型一般需3人。选择性价比高的电击检测设备制造厂家就找河北优安捷,公司是大厂家大品牌,检测数据准确无误,保持选材精良,反复试验,确保强化质检,出厂综合测试系统和转子综合测试系统都十分先进,保障产品数据精准,售后服务更是让人满意,3小时远程协助,48小时内人员到场为客户进行维护、维修。
性能测试的实现方法是什么
狭义的软件性能测试指为验证软件性能指标、评估系统服务能力、推荐系统软硬件配置、完成系统性能优化等而开展的测试活动;
广义的软件性能测试指在测试过程中需要相关性能测试方法配合完成的系统测试活动,包括可靠性测试、可恢复性测试、稳定性测试、兼容性测试、可扩展性测试等。
性能测试的七种方法:
1.基准测试
基准测试是指通过设计科学的测试方法,测试工具和测试系统,实现对一类测试对象的某项指标进行定量的和可对比的测试。
2.压力测试
通过对软件系统不断施加压力,识别系统性能拐点,从而获得系统提供的最大服务界别的测试活动,主要目的是检查系统处于压力情况下应用的表现。
3.负载测试
通过在被测系统中不断增加压力,直到达到性能指标极限要求。主要目的是找到特定的环境下系统处理能力的极限。
4.并发测试
主要指当测试多用户并发访问同一个应用、模块、数据时是否产生隐藏的并发问题,如内存泄漏、线程锁、资源争用问题,几乎所有的性能测试都会涉及并发测试。主要目的并非是为了获得性能指标,而是为了发现并引起的问题。
5.疲劳测试
通过让软件在一定访问量情况下长时间运行,以检验系统性能在多长时间会出现明显下降,主要目的是验证系统运行的可靠性。
6.数据量测试
通过让软件在不同的数据量情况下运行,以检测系统性能在各种数据量情况下的表现。主要目的是找到支持系统正常工作的数据量权限。
7.配置测试
配置测试主要是针对硬件而言,了解各种不同环境对系统性能影响的程度,从而找到系统各项资源的最优分配原则。主要目的是了解各种不同因素对系统性能影响的程度,从而判断出最值得进行的调优操作。
为什么学习性能测试?
门槛相对较低:比起自动化测试的纯写代码,性能测试入门门槛相对较低,是大部分转型和提升的朋友首选的切入口。
快速完善知识体系:优秀的性能测试工程师需要学习数据库、架构、工具等多方面的知识,能帮助大家完善整体的知识体系,提升综合竞争力。
市场大:性能测试工程师目前尚未饱和,处于发展中,机遇和挑战并存,谁能提前切入该领域谁就占领一席之地,你懂得!(单纯的功能测试以后危机会越来越严重)
关于性能测试怎么做和性能测试具体怎么测的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
性能测试怎么做的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于性能测试具体怎么测、性能测试怎么做的信息别忘了在本站进行查找喔。
暂时没有评论,来抢沙发吧~