睿象云智能告警平台的分派策略
668
2023-02-10
人工智能需如何跨越“人工智能技术鸿沟”?
在本文中,我将站在你的角度分享我在克服技术和产品困难时的四大教训,我最近在 ApacheCon 上提出了这些知识点。
人工智能技术鸿沟
新数据。 数据是人工智能的关键。例如,如果你想让聊天机器人学习,你必须向其算法模型提供客户请求和相应的正确响应的样本数据。样本通常是静态化、结构化的数据,如 CSV 的数据格式。
虽然你可以使用静态数据集构建很酷的人工智能演示,但真实世界中的人工智能算法模型需要新的数据进行增量式的训练,使其随着时间的变化而变得更聪明。这就是为什么公司应该及早投资机器学习架构,不断收集新的数据,并使用它定期更新其人工智能模型。
在聊天机器人开始自由交谈之前,它是利用公开的经过模型化、清洗和过滤的数据进行训练的。但是在机器人开始从与真实的人的不适当的交流中进行学习之后,它的推文的语气迅速地变得更差。GIGO(garbage in, garbage out)是机器学习的基本规则,所以一个良好的人工智能系统能够检测出潜在的问题,并在需要人工干预的时候向管理员发出警报。
人工智能产品鸿沟
优化正确的目标。人工智能的成功取决于正确地定义你的预测问题。从一开始,你需要清楚地识别输入查询,输出预测,并且分辨哪些预测是好的,哪些预测是坏的。数据科学家将使用这些评估指标来确定人工智能模型的准确性。
首先定下你的目标。你想要最大限度地提高收入,创造更好的用户体验,自动执行手动任务或者其他任务?要想成功,现实世界的人工智能产品必须使用能够准确反映业务目标的评估指标。
设置指标时,请记住三个关键要求。你需要确保:(1) 衡量什么是真正重要的事情;(2) 使用实时数据和新数据对结果进行评估;(3) 以一种他们理解的、有价值的方式向利益相关者解释结果。最后一个要求指出了人类和人工智能交互的关键点。
人类与人工智能交互。人类很复杂。 因此,当他们与人工智能进行交互时,会遇到在实验室中处理数据集时不会碰到的新挑战。请注意,如果客户不信任人工智能,就不会使用它驱动的产品。虽然你可以通过显示预测模型的准确性来尝试建立信任,但大多数消费者不能真正去关注可靠的科学指标。
实际上跨越人工智能的鸿沟并不是那么令人恐惧。当你迈进这个鸿沟时,要确保自己能够制定一个良好的计划去跨越它而不是跌落鸿沟。并且记住想要成为人工智能的先行者,你的公司必须要秉承客户至上的原则。
发表评论
评论列表