告警通知变得轻松便捷——微信告警接口指南
1160
2023-02-07
使用COMSOL模拟量子力学中的隧穿现象
(1)
WKB 隧穿模型
选择热电子发射以添加额外电流贡献。
如上文所述,对于与势垒相关的变量,电子和空穴的计算方式不同,所以我们为每种类型的载流子引入了不同的特征,它们在“模型开发器”中被添加到异质结或肖特基接触边界条件的子节点。请参考下方示例截图。
“模型开发器”的树结构和 WKB 隧穿模型,电子 特征的设置窗口。
在上图的设置 窗口中,边界选择 通常指定添加了额外电流密度的边界。域选择则指定势垒所在的相邻域。第二个边界选择指定了与第一个边界选择相对的域的边界。隧穿基本发生在选定域内,即第一个和第二个边界选择之间。
渐变异质结模型
我们通过在空间上改变 AlxGa1-xAs 层中铝的摩尔分数来形成三角形势垒层。在 COMSOL Multiphysics® 软件中,我们能够基于摩尔分数等局部变量,以及参考温度、晶格温度和掺杂浓度等参数和变量,直接创建材料并定义材料属性。摩尔分数则通过空间变化变量来定义。使变量在空间中变化有两种方法:使用显式表达式,或者在不同域内使用不同定义。我们在模型中利用了这两种方法。如下方截图所示,我们在定义下创建了多个变量节点,在不同域内应用不同的掺杂变量和摩尔分数。此外,我们利用内置的空间坐标变量 x 使摩尔分数在“域 2”内具有空间依赖性。
通过在 定义下添加多个节点(每个域对应一个节点),对不同的域应用不同的掺杂与摩尔分数变量。内置变量 x 使变量Al_frac具有空间依赖性。
上文所定义的空间依赖性变量可以用在材料与物理场的定义中,如下图所示。
我们将掺杂变量N_D直接输入到掺杂特征中,如下方截图所示。
在掺杂浓度的定义中使用空间因变量N_D。
我们利用摩尔分数变量Al_frac在材料定义中定义了一个便捷符号 x,此符号位于基本子节点的设置窗口的局部属性栏中,并被用于定义态密度(DOS)有效质量、相对介电常数、带隙、电子亲和性和迁移率。请注意,利用前缀 def,我们可以访问定义在基本 子节点中、带def标签的符号。例如,在下方截图中,输入框中的表达式def.x可用于访问有效质量me和mh。
通过符号def.x使用材料定义中的空间因变量Al_frac。
当访问物理场设置中的材料属性时,可以利用前缀material。以下方的截图为例,它利用表达式material.def.x来查找符号x。前文截图显示另一个示例,它利用表达式material.def.me访问电子有效质量。
使用前缀material访问物理场设置中的材料属性。
建立曲线坐标
如前文所述,(在通用几何的内置变量x、y和 z的简单表达式不可行的情况下)我们可以利用曲线坐标 接口沿电场线与隧穿边界建立坐标。此模型几何是一个简单的矩形(见 Ref. 1 中的图 2b),电场线和隧穿边界坐标简单地表示为 x 和 y。不过为了进行演示,我们仍然在此模型中使用曲线坐标 接口。如下方截图所示,我们在“模型开发器”中创建了两个包含扩散方法 选项的曲线坐标 接口,一个用于电场线,另一个用于隧穿边界。
入口边界的设置窗口。
将入口和出口边界置于在势垒域的另一侧,这样可以使解沿期望坐标发生变化。两个曲线坐标接口的解如下图所示。
两个曲线坐标 接口的解。垂直等值线是电场线的坐标,水平等值线是隧穿边界的坐标。
在此示例中,域 2 恰好覆盖了感兴趣区域,顺势对势垒进行线积分。通常情况下,我们可以使用几何内的不同边界来定义感兴趣区域,这些边界可能与材料边界重合,也可能不重合。
对于任意几何,曲线坐标 接口的解也许与电场线坐标不完全重合。不过,它为我们提供了良好的近似,并省去了通过数值方式搜索场线的麻烦。
上图中的解可用于定义 WKB 隧穿特征的坐标变量。下方截图显示了变量定义,前文截图显示了 WKB 特征的设置。
设置窗口显示隧穿变量的定义。
模拟隧穿效应的其他物理场设置
由于隧穿效应对势垒的形状高度敏感,所以我们改用有限元准费米能级公式。考虑到因变量在每个网格单元内均为常数,所以缺省的有限体积公式需要更加精细的网格。
我们在模型树中建立两个异质结边界条件,借此计算与比较包含与不包含隧穿效应的结果。
求解渐变异质结模型
该模型分阶段进行求解。“研究 1”计算了无隧穿效应的情况。因为曲线坐标在整个模型中不变,所以“研究 2”仅进行一次求解。
“研究 3”求解了包含隧穿效应的情况,而且只包含半导体物理场。为了提供良好的初始条件,我们使求解变量的初始值 指向“研究 1”的解。由于隧穿特征所需的曲线坐标 接口未包含在研究步骤中,所以我们使不求解的变量值 指向“研究 2”中的解,从而对曲线坐标进行定义。下方截图显示了相关设置。
研究设置。注意求解变量的初始值和不求解的变量值使用了不同的研究。
另外两项研究采用了相似的求解变量的初始值 和不求解的变量值 设置,主要计算低温下的情况。对于非线性方程系统,我们需要为辅助扫描建立一个良好的初始条件。我们发现,在温度较低的情况下,如果对 I-V 曲线从低电压扫描到高电压,收敛会更加容易。
比较仿真结果与参考文献
下图比较了温度为 300 K 时,有无隧穿效应分别对应的电流密度与电压(J-V)曲线。结果与 Ref. 1 中的图 12 很好地吻合。
比较有和没有隧穿效应情况下的 J-V 曲线。
为了解释势垒宽度对隧穿电流大小的影响,文献图 13 比较了两个偏置电压下的导带结构示意图和电子准费米能级。我们的模型准确地还原了相关数据,如下所示。
两个偏置电压下的导带图说明了势垒宽度对隧穿效应产生的影响。
最后,下图表明不同温度下的 J-V 模拟曲线与文献的图 14 基本一致。
不同温度下的 J-V 曲线。
结语
在本篇博客文章中,我们利用渐变异质结基准模型演示了 WKB 特征,并介绍了如何创建用户定义的三元材料属性。我们讨论了在研究设置中定义求解变量的初始值 和不求解的变量值 的基本技巧,这些技巧可应用于很多建模情景。我们希望您会将这些功能与技巧应用到仿真工作中。
如希望亲手尝试“异质结隧穿”模型,请单击下方按钮跳转至“案例下载”页面。登录 COMSOL Access 帐户后,您可以下载此示例的文档,如果您拥有有效的软件许可证,还可以下载 MPH 文件。
发表评论
暂时没有评论,来抢沙发吧~