aiops平台要怎么做(AIOps是什么)

来源网友投稿 851 2023-02-06

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops平台要怎么做,以及AIOps是什么对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享aiops平台要怎么做的知识,其中也会对AIOps是什么进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps具体是如何落地的?

AIOps如何落地,还是以具体案例来说比较容易理解。就拿擎创为北京农村商业银行做的项目来说。

项目背景:

近年来数字化转型的步伐愈发变快,随着北京农村商业银行业务规模的扩增以及业务形式的电子化加速,贯穿业务、市场、系统、应用、数据库、中间件、网络、安全等多方面的数据量迅速叠加堆积。然而,这些对于市场而言极具价值的巨量化数据并不集中,它们分散在银行的各中心服务器或设备之中,这使得银行的数据运维工作量越来越大,尤其是在日志的统一管理、监控、信息挖掘等方面极为明显。因此,北京农村商业银行对于信息技术提升和数据管理加强的需求日益加深。

根据监管部门对银行数据治理的相关指引以及中国银监会《商业银行信息科技风险管理指引》(银监发〔2009〕19号)中针对日志文件完整性、存留周期的相关要求,北京农村商业银行最终选择擎创科技助力其完善智能运维建设,保障其业务的平稳高效运行。


解决方案:

根据北京农村商业银行的需求以及现状,擎创科技通过以下手段为其建设运维大数据平台。

通过现分布式高可用,支持横向扩展,随着业务需要随时扩容平台节点;

通过高效数据采集手段,实现对现有IT环境的实时数据采集,打破各个孤立运维工具中的数据孤岛;

对所有运维数据进行集中高效的存储、查询及可视化展示;

支持结构化、非结构化的数据采集支撑;

内置AI智能日志分析引擎,实现日志异常检测、日志异常定位并辅助故障定位。

平台架构图如下:


创新点:

北京农村商业银行在运维大数据平台项目的建设中,采用流批一体的处理技术、流式窗口聚合方式,实现了实时采集、秒级处理、秒级查询,为运维人员提供高效的数据查询手段,为应用人员实现交易数据与日志的深度结合;

采用智能算法判断、故障根因定位,为运维人员提供便捷数据分析工具。充分挖掘了北京农村商业银行的运维数据价值、提升了运维管理水平、提高了运维效率。


建设成效:

建设日志治理平台和大数据平台,实现日志数据统一集中管理、KPI动态异常检测、日志智能聚类等功能。

日志治理+大数据平台(算法),当前日增日志6TB,设计容量10TB,热数据保存30天、冷数据保存3个月,大数据平台日志存档一年、指标类数据两年;

最高峰每秒处理日志500万条日志,其中最高按单笔业务交易日志行数达3000+行,经采集、数据提取、数据合并、数据丰富等数据处理后延时小于1s。


总结:

随着运维大数据平台的建设完成,北京农村商业银行实现了对各类运维日志数据的统一管理,能够对日志进行集中查询、聚类分析、快速分析、精细化分析等操作,结合监控告警的智能化处理,可以做到事前智能预警、事后快速定位故障并分析,进一步提升了银行数据中心的运维管理水平。

AIOps时代到来了,我们要如何应对?

在当前数字化转型aiops平台要怎么做的浪潮下aiops平台要怎么做,企业 IT 运维方面的投资规模将逐步增加aiops平台要怎么做,IT 运维的关注方向也将逐步从自动化运维向智能化运维发展。伴随着企业规模扩大,业务模式更新,以及云计算、大数据、人工智能等新技术应用,AIOps智能运维能力已在科技、互联网、金融、电信等行业逐步落地应用,并呈现出多样化的发展趋势。

目前国内AIOps智能运维的发展现状是:

1. 多数企业近年来在运维方面的资金投入仍处于增长阶段。近 4 成企业运维方面年平均投资规模超5000 万元,投资规模在 5000 万元-1 亿元的企业占比 11.24%,1 亿元-5 亿元 的企业占比 13.45%。

2. 超半数企业在实现自动化运维、自动化部署的基础上进一步增强监控、运维智能化能力。 根据本次调查显示,61.21%的企业选择优先关注和投资 DevOps 自动化部署,52%的企 业选择优先关注和投资升级监控和 AIOps。

3. 智能运维已经在各行业逐步落地应用,特别是在科技、互联网、金融、电信几大领域应用效果十分显著。根据本次调查结果,科技和互联网行业受访者所在企业表示已建立aiops平台要怎么做了智能 运维平台并形成了相关评价体系分别占比 49.64%和 37.96%,其次是银行占比 28.99% 和电信企业占比 25.97%。 

4. AIOps 仍处于初期发展阶段,受访者对目前 AIOps 能力水平的评价与期望超过其所在企业实际应用的情况。从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。

未来,AIOps 将是运维发展的必然趋势,也将是增长最快的方向。根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。


尤其对于中大型企业来说,企业的数字化转型成功与AIOps智能运维建设密不可分。基于这种情况,企业应该及早布局,才不会落于人后。

AIOps市场未来将会如何发展?

从未来发展趋势来看,ITOA、AIOps会是未来增长最快的两个方向。随着以数据为核心的运维分析出现,运维市场逐渐由ITOM演变成ITOA(IT Operations Analytics),后来又提出了智能化运维(AIOps)。尽管目前肯定还是ITOM占市场的主体,但随着企业数字化转型的快速发展,IT系统数量快速增长,还有云原生架构的应用导致系统复杂度越来越高,传统运维方式已经无法满足企业的需求,因此,借助AI技术能力实现运维智能化,提高运维效率和运维质量,成为IT运维的必然趋势。现在,IT运维的发展正处于螺旋式的上升期,根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。
不过国内AIOps的落地实践也面临着挑战:
1. 不切实际的期望。AIOps的技术还不是完全成熟,很多用户很难将智能自动化的运维与实际可实现的案例分开,认为AIOps已经能够实现智能自动化,而实际上现在距离真正的智能运维还有很长的一段路要走。
2. 有价值的案例需要实践时间。AIOps平台需要通过不断的学习观察,在一定的时间、发生频率内,才能将正常的数据范围和模式跟解决方案结合起来,以建立合适的观测模型,为后续的业务运营提供保障。
3. 市场的转变。AIOps的市场正处于不断的变化发展中,监控供应商正在向上层业务移动,AIOps平台的供应商则正在进入监控领域,而ITSM供应商却只是将AIOps的功能视为扩展其范围的一种手段,随着技术的进步以及市场认知度的完善,会逐渐改变市场对于“技术水平”的定义。
4. 数据的质量。成功的AIOps解决方案需要高质量的数据作为支撑,但当下离散的IT系统和数据信息孤岛让数据分析结果产生负面的影响,使得治理效果并不十分令用户满意。
5. 基于复杂项目交付的定制工作。国内企业需要大规模、端到端、基于企业内部的部署,需要大量定制和整合的工作,对于供应商而言是极大的挑战。
6. 中国企业的IT堆栈。随着国家政策的推进,企业面临本土化转型的挑战,很多三方工具(由国外引入)并不是全都能很好的支持本土AIOps平台。
擎创科技,作为国内首批智能运维领域的解决方案提供商,将持续锚定赛道,用心服务用户,不断根据落地反馈来优化升级解决方案,助力客户完成从传统运维到智能运维的转变,也希望真正的智慧运营能够早日到来。

什么是AIOps?怎么促进业务提升?

智能运维的概念是Gartner在2016年率先提出,当初的英文全称为Algorithmic IT Operations,意指基于算法的IT运维。随着人工智能技术的发展,2018年Gartner将其英文全称更改为Artificial Intelligence for IT Operations,表明人工智能在IT运维领域的应用。至今短短六年,其概念还在不断融入新的认知。
当前IT运维难度增加,依靠人力堆积的传统方式运维已经无法满足数字化时代对IT运维的要求,借助更先进工具和技术手段成为应对这些挑战的必然选择。数据中心面临着从制度和流程为主驱动的时代,快速向数据与算法为主驱动的智能运维时代迈进。智能运维,已然成为迎接挑战不可或缺的科技力量和解决方案。
AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。AIOps智能运维可以将全栈式的运维数据进行集中化管理,不同数据领域也可以进行智能算法根因定位。其次它可以从业务场景进行跟踪,了解交易路径,对于数据进行智能分析与预测。所以智能运维是一种全新的数字化运维能力,可以配合企业的数字化转型,保障企业的业务应用能够安全稳定且高效的运行。

AIOps是如何促进业务提升的?

AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。AIOps智能运维可以将全栈式的运维数据进行集中化管理,不同数据领域也可以进行智能算法根因定位。其次它可以从业务场景进行跟踪,了解交易路径,对于数据进行智能分析与预测。所以智能运维是一种全新的数字化运维能力,可以配合企业的数字化转型,保障企业的业务应用能够安全稳定且高效的运行。

AIOps智能运维相对于传统运维模式而言,能够给企业在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

所以,智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。

关于aiops平台要怎么做和AIOps是什么的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 aiops平台要怎么做的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于AIOps是什么、aiops平台要怎么做的信息别忘了在本站进行查找喔。
上一篇:广州智能运维平台(广州地铁智能运维系统)
下一篇:西安it运维(It 运维)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~