睿象云智能告警平台的分派策略
741
2023-02-05
人工智能技术可以保护网络的安全吗
人工智能再次崛起是以IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫事件为代表,这是人工智能发展的一个重要里程碑。而2016年AlphaGo战胜围棋冠军李世石则把人工智能推上了一个新的顶峰。在最近3年人工智能则引发了一场商业革命,谷歌、微软、百度等互联网巨头以及众多的初创科技公司,纷纷加入人工智能战场,掀起一轮又一轮的智能化狂潮,人工智能技术已经开始应用在各行各业,在网络和安全领域的研究和应用也得到了各科技公司的重视,其应用价值开始浮现。
人工智能在网络领域的应用
人工智能在网络最重要的应用包括智能运维、网络加速和网络优化三部分。
1. 智能运维
1) 智能监控
随着企业IT系统规模的扩大、运维环境的复杂化,使得运维人员从海量的数据中发现问题的难度也越来越大。智能运维可以通过智能异常检测、故障关联分析、故障根因分析和智能异常预测等能力,帮助运维人员快速定位问题、追溯故障根源,并实现故障的预测预警。以智能异常检测为例,通过历史数据模型的异常检测等方法并结合AI技术,能够自动、实时、准确地从监控数据中发现异常,为后续故障的分析与处理提供基础。
2) 智能问题发现和预警
在告警方面,传统的告警管理一般使用固定阈值并且需要运维人员手动设置,这种方式不仅工作量巨大且十分依赖运维人员的经验,阈值设置不当可能导致告警风暴或者告警漏报等后果。当监控环境发生变化时,原先的固定阈值无法满足告警管理的要求。而智能运维采用动态基线告警方式,智能分析数据的动态极限,弥补了以往人为设置固定阈值的缺陷,智能地分析数据的发展趋势以及分析数据动态极限,从而对告警做出智能的判断,也就有更大灵活性和适用性。
3) 智能故障处理
在智能故障处理方面,传统运维管理中对故障的处理非常依赖运维人员的经验,但人的经验无法覆盖所有故障范围,运维人员经验不足可能会使运维效率低下或者产生错误决策。智能运维将实时监测结果或者预测结果引入智能专家决策系统,智能生成决策建议,根据实际结果及趋势判断采用的处理策略,可以是人工处理或者自动处理,有效减少问题排查的时间、大幅提升问题解决的效率,提升企业运维的标准化程度。
2. 网络加速
图1 基于强化学习和普通TCP拥塞算法测试对比图
在图1中,红色是采用普通NewReno算法的测试效果,绿色则是采用强化学习的LP-TCP测试效果,从图1中可以清楚看到,基于强化学习的TCP拥塞窗口非常稳定,这也是为什么能提高网络带宽利用率的原因,同时因为拥塞窗口的稳定,设备的队列深度也维持在一个稳定的水平,端到端时延也同时减少了。
3. 网络优化
人工智能在安全的应用
1. 加密流量威胁检测
图2 用人工智能对提取的TLS联接的数据包进行分析
2. APT防攻击检测
此外,借助于人工智能增强学习的优势,可以构建并完善一套主动式安全防御系统。如今的网络攻击和病毒具有易变性的特点,被动防御已经不能满足当前网络安全的要求,主动防御成为趋势和必须,借助人工智能的学习和进化能力,可以针对即将发生或者未知的攻击行为,与安全策略和威胁情报有机结合,最终实现智慧型、主动型的安全防御系统。
结束语
当然,我们同时也要意识到人工智能并非是万能的,甚至发展到某些时候还可能带来负面的效果。人工智能作为一门当前最热的技术之一,其在网络和安全的应用和探索仍然还在进行当中,但网络智能化和安全智能化的趋势不可阻挡,人工智能在其中也扮演着不可或缺的角色。
发表评论
暂时没有评论,来抢沙发吧~