睿象云智能告警平台的分派策略
793
2023-02-03
本文目录一览:
IT运维从传统走向智慧,首先要经历数字化运维阶段,搭建数字运维中台既是实现运维数据有效治理的前提和基础,也是推进运维数智化转型的第一步。针对上述需求,擎创科技自主研发的擎创夏洛克AIOps智慧运营平台(如下图所示)可通过数字运维中台,对运维数据进行统一的采集存储和管理,即便面对高达100TB的日增数据量,也可进行秒级实时分析,为异常检测、根因定位等场景奠定坚实基础。
与传统运维方式相比,智能化运维最突出的优势是“数据大集中”,即基于数字运维中台建设,通过统一监控中心来集中管理和分析所有运维数据,并以业务视角观测运维数据的相关性,最终建立智能化场景来解决实际问题。擎创自主研发的智能运维产品——夏洛克AIOps智慧运营平台,刚好为此量身定制。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。
目前,夏洛克AIOps已在政府机关组织、银行业、证券保险业和交通运输业等行业场景中应用落地,极大节省了企业客户的人力成本和资金成本,提升了运维的有效性和质量。例如,通过为客户构建智能运维平台,轻松应对日增80TB的数据量,让客户平均故障修复时间(MTTR)缩短150%以上,运维总体拥有成本(TCO)下降80%以上。
作为企业数字化转型的重要手段,IT运维效率的高低会直接影响到业务的正常运转,传统运维走向智能运维,其实就是运维数字化的过程。在智能运维建设过程中,先平台还是先场景,对于很多企业用户来说一直是个难题。如果用户对自身数据情况了解非常清晰,且希望打破数据孤岛以建立统一运维数据平台,那么可以优先选择平台建设;如果用户明确知道底层平台需要的能力,寄希望于能直接带来业务价值,可以优先选择场景建设。
例如一家城市商业银行,它目前最大的问题可能只是监控效能低下,误报漏报多,我们可以先从集中告警入手,利用算法去重降噪,再查看相关告警之间的有效告警场景,筛选出最可能影响业务问题的告警。在提高告警处理效率后,再通过分析告警的源头,进一步解决监控指标静态阈值设定不准确的问题,用智能异常检测替代之,从而根本上提升监控效能。这就是场景化方式导入智能运维的方法。
智能运维建设,可以根据用户实际运维情况,同步开展,循序渐进地进行建设。擎创根据以往经验,总结出三个原则六步走的最佳实践方案,我们首先可以通过集中监控智能化改造、指标监控智能化改造和日志异常检测(弥补监控手段不足)等提升实时性数据处理能力,再通过智能故障排查(根因分析和定位)、智能知识管理(知识图谱)和故障自愈提升数据事后分析和处理能力。
对于有些公司提出的,运维成熟度不高不敢考虑智能运维?
运维成熟度度高的的企业,可以按照数据处理能力的维度,统一规划、分层实施,实现从运维数据局部集中到跨域集中,也就是先建立运维大数据平台,通过加强数据治理、优化数据质量,而后再过渡到基于算法的统计分析乃至流式实时处理,构建多样化智能运维场景,逐层实现智能运维能力建设。
但这种方式并非放之四海而皆准,对于成熟度不高的企业,迫切需要解决的是实际运维问题,而智能运维这时应该能成为解决实际问题的工具,它可以根据客户当前的运维成熟度选择具体应用场景,按照不同的路线图进行建设,这才是智能运维的应有的能力。智能运维的本质就是逐步提升对运维数据的分析处理能力。
智能运维平台集中智能运维平台建设,又称AIOps集中智能运维平台建设,是将AI赋能于IT传统运维,通过对日志、指标、Trace等数据集中智能运维平台建设的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。
一套完整集中智能运维平台建设的智能运维平台系统,通常包括集中智能运维平台建设:
(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。
(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案
(3)告警辨析中心:智能化集中告警,构建闭环告警管理
(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析
(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测
(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景
智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次
AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。
但在崭新的AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。
为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。
AI时代数据中心网络面临三大挑战
当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策建议和智慧化的行为指引。
根据华为GIV 2025(Global Industry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。
作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。
华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:
挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。
挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。
挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。
华为定义AI时代数据中心交换机三大特征
从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。
那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”
特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力
从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。
但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。
CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存储IOPS(Input/Output Operations Per Second)性能提升30%。
特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求
数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。
集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。
为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。
特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位
当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。
CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。
引领数据中心网络从云时代迈入AI时代
自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。
2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。
早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务弹性伸缩、自动化部署等核心诉求。
而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。
2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。
而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。
发表评论
暂时没有评论,来抢沙发吧~