包含aiops系统操作手册的词条

来源网友投稿 952 2023-02-01

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops系统操作手册,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享aiops系统操作手册的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps是什么?和AI有什么关系?

我们现在提到的 AI,更多的是依赖机器学习(包含深度学习)算法的实现的 AI 场景,或者说机器学习算法只是实现 AI 的其中一种手段。了解了上面的概念,再回到 AIOps 上来,拆分为 AI + Ops 会准确一些,也就是 Ops 与 AI 相结合可以做的事情。
AIOps 涉及的技术,从 AI 的角度,主要还是机器学习算法,以及大数据相关的技术,因为涉及到大量数据的训练和计算,从 Ops 的角度,主要还是运维自动化相关的技术。另外 AIOps 一定是建立在高度完善的运维自动化基础之上的,只有 AI 没有 Ops,是谈不上 AIOps。

AIOps是什么?

AIOpsaiops系统操作手册,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。

传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。

经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。

Gartner在其2022年的AIOps报告中也指出aiops系统操作手册:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。

相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。

通常,AIOps智能运维系统包含这几个功能模块:

什么是 AIOps?

AIOps(即 人工智能 IT 运营 )是应用 人工智能 (AI) 来改进 IT 运营的方法。 具体而言aiops系统操作手册,AIOps 使用大数据、分析和机器学习功能来执行以下操作aiops系统操作手册

通过将多个单独的手动 IT 运营工具替换为单一的智能自动化 IT 运营平台aiops系统操作手册,AIOps 使 IT 运营团队能够更快地作出响应,甚至主动处理慢速和中断事件,从而大幅减少工作量。

参考: AIOps

如何做好运维工作

一、运维方法
技术层面:
随着信息技术的发展以及企业业务的不断扩张,运维人员所面临的系统架构越发的复杂,关联度越发紧密。对运维人员的要求也会越来越高,打造个个都是高手,对业务系统了如指掌。
1、需要运维人员快速转变观念,学会通过主动运维的方式应对复杂多变的 IT 问题,保证业务系统的稳定。
2、更多的站在客户的层面思考问题,解决问题。
3、使用集成的运维平台,在业务系统没有感知的情况下实现了业务的变更、升级。
运维文档层面:
一个好的系统或者项目,必定有很多的文档进行支撑。
1、系统建设前期,一定要做好系统的需求文档、设计文档、实施文档。在系统建设中要依据前期的文档进行实施和设计,并生成系统相关的问题总结文档和更新实施文档。
2、系统建设完成后,要基于系统的业务能力和使用对象编写操作手册和运维手册等。
3、业务在交付一定要文档同行。否则系统上线后问题层出不穷,导致运维人员手忙脚乱,不知道从何下手处理,往往会让运维人员绕很多的弯路,错失良机。
4、文档归类保存:文档也分好多种,比如配置文档、实施文档、设计文档、系统规范性文档、项目管理文档等等。做到一式两份,运维部门一份,档案室一份。
5、要求运维人员一定要具备相应的文档编写能力和整理能力。同时一定要严格按照之前的文档进行实施,有问题要学会及时沟通,并把修正后的问题更新到文档中。
6、建立知识库:把运维过程中出现的问题及解决办法和思路,另外最重要的是运维事件的总结,记录在案。
运维流程层面:
1、建立运维流程。要求运维人员一定要基于一个既定的规则来干活。
2、通过流程确定事件责任。业务人员专注点与运维人员的专注点不同,责任也不同。
3、使用ITIL 了(即 IT 基础架构库(Information Technology Infrastructure Library,ITIL,信息技术基础架构库)。ITIL 为企业的 IT 服务管理实践提供了一个客观、严谨、可量化的标准和规范。
二、运维人员技术
正所谓工欲善其事,必先利其器。很多的企业都在强化以用户服务为中心,专业技术为驱动的理念,可见拥有过硬的技术是多么的重要。
1、运维人员必须掌握的技能:
运维对技术的要求是很高的,首先运维人员要对自己所负责的系统有较深的理解,全程参与系统的设计、实施与运维。一定要具备相关领域的技术积累,有较丰富的设计或者排错经验
同时运维人员具备以下软实力:如沟通能力、合作心态和文档编写能力。
2、运维人员一定要对现在的主流技术有一定的涉猎(云计算、边缘计算、大数据、AIOps、人工智能、深度学习等等),要与时俱进。
3、经常参与线上或者线下的相关讨论和交流学习。了解目前流行的 IT 技术,并学习它,思考如何将其用于企业的业务中,为企业创造价值,提升运维效率。所以具备主流技术的捕捉能力,也是运维人员的必修课之一。
三、运维现场监控层面
监控的目的就是防患于未然。通过监控,运维人员能够及时了解到企业网络的运行状态。
一旦出现安全隐患,可以及时预警或者是以其他方式通知运维人员,让运维监控人员有时间处理和解决,避免影响业务系统的正常使用,将一切问题的根源扼杀在摇篮当中。现在的监控工具可以在监控指标触发时,自动修复一些故障,但是它最多帮你做些简单的自动化任务,更高阶的自动化任务需要运维人员具备较深的脚本和系统知识。

AIOps是不是不能带手机

AIOps只能用在电脑上aiops系统操作手册,不能用在手机上。
AIOps服务操作顾名思义就是对计算机服务器的日常操作与维护aiops系统操作手册,服务器操作包含软件和硬件操作两部分。
智能运维集成平台系统对不同级别的报警信息采取不同的处理方法aiops系统操作手册,将其划分为两部分aiops系统操作手册,第一部分是关于整个网络流量的告警信息,第二部分是针对各个网络设备和服务器的报警日志。

华为AIOps使能服务加速新基建运维智能化转型

人工智能经历了六十多年的浮浮沉沉,随着计算算力的进步,算法的创新和互联网发展下的海量数据积累,人工智能技术未来十年将焕发出新的活力,成为最具有冲击力的 科技 发展趋势之一。

在HUAWEI CONNECT 2020期间,华为基于对电信领域的深刻理解和多年经验沉淀,带来了《AIOps使能服务》的分享,旨在结合电信领域应用场景,使能网络达到自动、自愈、自优和自治的自动驾驶网络,提升整个网络的效率,降低OPEX。

AIOps成为电信网络运维智能化转型趋势

随着“5G 新基建”的加速实施,数字经济发展迎来新的动能。不仅推动投资消费的快速成长,还将驱动各行业的数字化转型升级。随之而来的是网络问题复杂化与业务质量高要求的挑战,运维能力的演进成为电信网络能否持续发挥效能的关键因素。

电信网络运维作业正面临问题发现被动(75% 问题由用户发现),故障根因定位难(90% 时间用于问题定位)的业务挑战。同时,各专业运维支撑系统功能也面临开发周期长,闭环流程自动化程度低的技术瓶颈。因此,运营商期望引入AI实现智能运维,做到主动维护和故障自愈。

在运维支撑系统的演进方向上,AIOps(运用AI及大数据技术解决运维问题)已经成为电信行业运维智能化转型的趋势和共识:构建AIOps平台能力,支撑不同运维场景应用。在未来五年内,电信行业市场的运维系统和平台将加速AI能力的升级,成为电信领域AI应用的核心场景,投资占比达到60%。

因此,AIOps已经成为电信网络运维智能化转型趋势。通过构建电信领域AIOps平台能力,快速实现智能运维升级。

华为AIOps助力网络提升可靠性及使能智能化运维

按照自动驾驶网络的等级定义,运维的智能化目标是要实现全域、全流程的预测性运维,自动监控、定位、自愈。

华为AIOps使能服务作为自动驾驶网络AI引擎NAIE的核心能力,基于AI平台,提供了一系列的电信领域AIOps原子能力以及组合编排能力,使能网络管控析单元、智能运维解决方案等运维系统,最终帮助运营商打破原有的烟囱式建设方式,将各专业运维系统的应用与AI能力解耦,采用分层的服务化架构对接共享数据中心,集中提供AIOps能力,适配运维场景应用百花齐放的需求。

如下是华为AIOps使能服务预组合编排好的服务,可开箱即用:

kpi异常检测服务, 快速智能识别海量kpi/kqi的异常情况,广泛应用在网络性能和质量监控场景;

故障识别与根因定位服务, 根据海量告警结合对应网络拓扑和传播知识,实时识别故障及根因网元及告警,可自动学习知识规律,保证持续优化,可广泛应用在各种网络场景;

日志异常检测服务, 实现日志的自动分类和统计规律发掘,实时监控出系统的异常行为和相关日志,可广泛应用在IT及电信网络场景;

硬盘异常预测, 可智能预测短期内(14天)的硬盘故障,以采取规避预防措施,以免对业务产生影响,广泛支持主流厂商的HDD及SSD型号。

细数华为AIOps使能服务四大核心竞争力

提供丰富的AIOps原子能力: AIOps的原子能力覆盖运维全流程,包括预测、检测,定位、执行。原子能力库支持流量预测,故障预测,KPI异常检测,日志异常检测,CHR异常检测,异常关联分析,事件聚合,根因定位等20+原子能力。

作为电信领域的AIOps使能服务,具备两个核心特点:一是基于华为电信领域的经验,原子能力将AI算法与电信领域行业知识融合,预制了默认的电信领域模型参数,同时支持现网运行态的调优,解决当前通用算法模型在具体行业落地效果差的难题。目前,已经在现网得到了规模验证。

另一个是AIOps原子能力采用标准化模型规范,统一数据输入,参数配置,结果输出等接口。为AIOps单点原子能力到灵活的组合串接提供了基础。

组合编排与DevOps能力: 通过组合编排功能,使用者可选择业务场景所需的AIOps原子能力,通过可视化方式完成流程串接,并进行业务泛化参数配置,包括数据接入方式,模型参数,内置电信领域泛化参数,事件通知方式、可视化Dashboard等配置。上述能力支持可视化编排或接口调用方式实现。此外,基于NAIE平台训练服务,AIOps的原子能力库支持使用者根据实际业务需求开展算法模型的创新与开发,不断扩展AIOps能力。NAIE的生态服务也提供专业的人员培训赋能。

支持电信领域数据对接: 支持KPI、告警、日志、xDR等电信领域主流运维数据。支持Kafka,数据库,文件系统,Restful等电信运维系统的主流数据对接方式。AIOps使能服务提供通用的数据源对接和标准化数据治理组件,通过配置项快速建立与运维系统的数据源连接,通过SDK将不同的数据类型和格式治理成标准化的AIOps原子能力输入集,用于模型训练和推理。

场景组合服务: 围绕运维全流程(发现、分析、处理)提供预制典型场景组合应用,快速接入运维流程。

综上所述,华为AIOps使能服务作为智能运维AI能力引擎,融合AI的技术优势与华为在电信领域的专业优势,为运维系统的智能化演进提供AIOps平台能力支持,助力到各专业运维系统的应用快速上线,让运维专家专注场景应用设计和业务目标达成。

华为AIOps助力运营商及企业网络打造最佳实践

在KPI异常检测方面,电信网络中,通过KPI来预测和检测网络问题是最普遍的场景。通过AI算法基于 历史 数据自动生成每个KPI的动态门限,避免传统静态门限带来的误报和漏报。

华为NAIE融合了电信领域的运维业务特点,提供单指标/多指标检测,异常原因关联分析,模型的自学习调优等关键能力。目前已经用在核心网,无线,数通等不同业务领域。国内某运营商采用了核心网KPI异常检测服务以后,实现提前5小时识别异常并主动预警,降低了业务损失。

在告警根因定位方面,发现异常或者故障之后的定位是运维流程中的难点,如何准确的将多维度的异常、告警等事件进行汇聚,减少故障噪声,准确定位到具体原因?这些工作目前主要依赖专家经验或者手工分析,而且受限于分析算力和知识信息,效果并不好。

华为NAIE AIOps通过AI算法与业务的融合,支持多类异常/告警等事件的智能故障定位,自动实现时间,拓扑和故障传播图等维度的事件汇聚和根因定位。目前已经应用到无线接入网等业务领域,经过实际验证,无效上站减少60%,根因识别准确率85%+,运维效率整体提升15%。

写在最后,电信领域AIOps落地的关键是需要将行业知识与AI技术融合。网络运维系统的AIOps能力构建的趋势是业务与能力解耦,做到AIOps能力的复用、拉通,支持,适配运维场景应用百花齐放和快速上线迭代的需求。

因此,AIOps使能服务作为智能运维AI能力引擎,融合AI的技术优势与华为在电信领域的专业优势,为运维系统的智能化演进提供AIOps平台能力支持,助力到各专业运维系统的应用快速上线,让运维专家专注场景应用设计和业务目标达成。目前,华为AIOps使能服务已经在无线,核心网,数通等网络域得到了广泛的应用。

关于aiops系统操作手册和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 aiops系统操作手册的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、aiops系统操作手册的信息别忘了在本站进行查找喔。
上一篇:关于aiops系统搭建的信息
下一篇:关于日志和事件通知一样吗英文的信息
相关文章

 发表评论

暂时没有评论,来抢沙发吧~