AIops行业现状(ai的发展趋势)

来源网友投稿 921 2023-01-31

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈AIops行业现状,以及ai的发展趋势对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享AIops行业现状的知识,其中也会对ai的发展趋势进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps时代到来了,我们要如何应对?

在当前数字化转型的浪潮下AIops行业现状,企业 IT 运维方面的投资规模将逐步增加,IT 运维的关注方向也将逐步从自动化运维向智能化运维发展。伴随着企业规模扩大,业务模式更新,以及云计算、大数据、人工智能等新技术应用,AIOps智能运维能力已在科技、互联网、金融、电信等行业逐步落地应用,并呈现出多样化的发展趋势。

目前国内AIOps智能运维的发展现状是AIops行业现状

1. 多数企业近年来在运维方面的资金投入仍处于增长阶段。近 4 成企业运维方面年平均投资规模超5000 万元,投资规模在 5000 万元-1 亿元的企业占比 11.24%,1 亿元-5 亿元 的企业占比 13.45%。

2. 超半数企业在实现自动化运维、自动化部署的基础上进一步增强监控、运维智能化能力。 根据本次调查显示,61.21%的企业选择优先关注和投资 DevOps 自动化部署,52%的企 业选择优先关注和投资升级监控和 AIOps。

3. 智能运维已经在各行业逐步落地应用,特别是在科技、互联网、金融、电信几大领域应用效果十分显著。根据本次调查结果,科技和互联网行业受访者所在企业表示已建立AIops行业现状了智能 运维平台并形成了相关评价体系分别占比 49.64%和 37.96%,其次是银行占比 28.99% 和电信企业占比 25.97%。 

4. AIOps 仍处于初期发展阶段,受访者对目前 AIOps 能力水平的评价与期望超过其所在企业实际应用的情况。从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。

未来,AIOps 将是运维发展的必然趋势,也将是增长最快的方向。根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。


尤其对于中大型企业来说,企业的数字化转型成功与AIOps智能运维建设密不可分。基于这种情况,企业应该及早布局,才不会落于人后。

AIOps未来趋势是怎么样的?

AIOps 是运维发展的必然趋势。
一个很明显的规律,凡是让能让我们的生活变得更美好、更简单、更方便的技术,一定会具有强大的生命力,也必然会成为发展趋势,而 AI 正是这样的技术之一,AIOps 又是其中的一个专业领域。运维的发展变化是随着业务和技术发展变化的,根本上还是业务驱动和倒逼出来的。
当前这个阶段,现实情况,系统里面已经有大量软硬件模块、日志、监控告警指标也纷繁复杂,一方面是无法在问题萌芽状态就发现问题,无法提前做出预判,另一方面是发生了问题又无法快速确定根因,造成持续的资损。技术发展上,随着计算能力、数据量的积累、以及机器算法的进步,如何更加高效地开展 Ops 这个问题就摆在我们面前,AIOps 的模式应运而生。
所以,运维一步步发展到当前这个状态,根本上讲还是业务高速发展倒逼出来的,同时,从手动运维到运维自动化,再到 AIOps,这个过程根本上是在朝着如何更加高效运维的趋势在发展。

AIOps具体是如何落地的?

AIOps如何落地,还是以具体案例来说比较容易理解。就拿擎创为北京农村商业银行做的项目来说。

项目背景:

近年来数字化转型的步伐愈发变快,随着北京农村商业银行业务规模的扩增以及业务形式的电子化加速,贯穿业务、市场、系统、应用、数据库、中间件、网络、安全等多方面的数据量迅速叠加堆积。然而,这些对于市场而言极具价值的巨量化数据并不集中,它们分散在银行的各中心服务器或设备之中,这使得银行的数据运维工作量越来越大,尤其是在日志的统一管理、监控、信息挖掘等方面极为明显。因此,北京农村商业银行对于信息技术提升和数据管理加强的需求日益加深。

根据监管部门对银行数据治理的相关指引以及中国银监会《商业银行信息科技风险管理指引》(银监发〔2009〕19号)中针对日志文件完整性、存留周期的相关要求,北京农村商业银行最终选择擎创科技助力其完善智能运维建设,保障其业务的平稳高效运行。


解决方案:

根据北京农村商业银行的需求以及现状,擎创科技通过以下手段为其建设运维大数据平台。

通过现分布式高可用,支持横向扩展,随着业务需要随时扩容平台节点;

通过高效数据采集手段,实现对现有IT环境的实时数据采集,打破各个孤立运维工具中的数据孤岛;

对所有运维数据进行集中高效的存储、查询及可视化展示;

支持结构化、非结构化的数据采集支撑;

内置AI智能日志分析引擎,实现日志异常检测、日志异常定位并辅助故障定位。

平台架构图如下:


创新点:

北京农村商业银行在运维大数据平台项目的建设中,采用流批一体的处理技术、流式窗口聚合方式,实现了实时采集、秒级处理、秒级查询,为运维人员提供高效的数据查询手段,为应用人员实现交易数据与日志的深度结合;

采用智能算法判断、故障根因定位,为运维人员提供便捷数据分析工具。充分挖掘了北京农村商业银行的运维数据价值、提升了运维管理水平、提高了运维效率。


建设成效:

建设日志治理平台和大数据平台,实现日志数据统一集中管理、KPI动态异常检测、日志智能聚类等功能。

日志治理+大数据平台(算法),当前日增日志6TB,设计容量10TB,热数据保存30天、冷数据保存3个月,大数据平台日志存档一年、指标类数据两年;

最高峰每秒处理日志500万条日志,其中最高按单笔业务交易日志行数达3000+行,经采集、数据提取、数据合并、数据丰富等数据处理后延时小于1s。


总结:

随着运维大数据平台的建设完成,北京农村商业银行实现了对各类运维日志数据的统一管理,能够对日志进行集中查询、聚类分析、快速分析、精细化分析等操作,结合监控告警的智能化处理,可以做到事前智能预警、事后快速定位故障并分析,进一步提升了银行数据中心的运维管理水平。

相比传统运维工具,AIOps的优势在哪里?

作为一种将算法集成到工具里的新型运维方式,AIOps 可以帮助企业最大程度地简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。

有了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

对 IT 运维人员而言,当一条告警被确认的时候,不但意味着你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。

关于AIops行业现状和ai的发展趋势的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 AIops行业现状的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于ai的发展趋势、AIops行业现状的信息别忘了在本站进行查找喔。
上一篇:关于支付系统性能测试的信息
下一篇:百度智能运维(百度运维工程师)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~