本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops需求,以及aiops产品对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享aiops需求的知识,其中也会对aiops产品进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
AIOps市场未来将会如何发展?
从未来发展趋势来看,ITOA、AIOps会是未来增长最快的两个方向。随着以数据为核心的运维分析出现,运维市场逐渐由ITOM演变成ITOA(IT Operations Analytics),后来又提出了智能化运维(AIOps)。尽管目前肯定还是ITOM占市场的主体,但随着企业数字化转型的快速发展,IT系统数量快速增长,还有云原生架构的应用导致系统复杂度越来越高,传统运维方式已经无法满足企业的需求,因此,借助AI技术能力实现运维智能化,提高运维效率和运维质量,成为IT运维的必然趋势。现在,IT运维的发展正处于螺旋式的上升期,根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。
不过国内AIOps的落地实践也面临着挑战:
1. 不切实际的期望。AIOps的技术还不是完全成熟,很多用户很难将智能自动化的运维与实际可实现的案例分开,认为AIOps已经能够实现智能自动化,而实际上现在距离真正的智能运维还有很长的一段路要走。
2. 有价值的案例需要实践时间。AIOps平台需要通过不断的学习观察,在一定的时间、发生频率内,才能将正常的数据范围和模式跟解决方案结合起来,以建立合适的观测模型,为后续的业务运营提供保障。
3. 市场的转变。AIOps的市场正处于不断的变化发展中,监控供应商正在向上层业务移动,AIOps平台的供应商则正在进入监控领域,而ITSM供应商却只是将AIOps的功能视为扩展其范围的一种手段,随着技术的进步以及市场认知度的完善,会逐渐改变市场对于“技术水平”的定义。
4. 数据的质量。成功的AIOps解决方案需要高质量的数据作为支撑,但当下离散的IT系统和数据信息孤岛让数据分析结果产生负面的影响,使得治理效果并不十分令用户满意。
5. 基于复杂项目交付的定制工作。国内企业需要大规模、端到端、基于企业内部的部署,需要大量定制和整合的工作,对于供应商而言是极大的挑战。
6. 中国企业的IT堆栈。随着国家政策的推进,企业面临本土化转型的挑战,很多三方工具(由国外引入)并不是全都能很好的支持本土AIOps平台。
擎创科技,作为国内首批智能运维领域的解决方案提供商,将持续锚定赛道,用心服务用户,不断根据落地反馈来优化升级解决方案,助力客户完成从传统运维到智能运维的转变,也希望真正的智慧运营能够早日到来。
AIOps未来趋势是怎么样的?
AIOps 是运维发展的必然趋势。
一个很明显的规律,凡是让能让我们的生活变得更美好、更简单、更方便的技术,一定会具有强大的生命力,也必然会成为发展趋势,而 AI 正是这样的技术之一,AIOps 又是其中的一个专业领域。运维的发展变化是随着业务和技术发展变化的,根本上还是业务驱动和倒逼出来的。
当前这个阶段,现实情况,系统里面已经有大量软硬件模块、日志、监控告警指标也纷繁复杂,一方面是无法在问题萌芽状态就发现问题,无法提前做出预判,另一方面是发生了问题又无法快速确定根因,造成持续的资损。技术发展上,随着计算能力、数据量的积累、以及机器算法的进步,如何更加高效地开展 Ops 这个问题就摆在我们面前,AIOps 的模式应运而生。
所以,运维一步步发展到当前这个状态,根本上讲还是业务高速发展倒逼出来的,同时,从手动运维到运维自动化,再到 AIOps,这个过程根本上是在朝着如何更加高效运维的趋势在发展。
相比传统运维工具,AIOps的优势在哪里?
作为一种将算法集成到工具里aiops需求的新型运维方式,AIOps 可以帮助企业最大程度地简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。
有aiops需求了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。
由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。
对 IT 运维人员而言,当一条告警被确认的时候,不但意味着aiops需求你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。
AIOps是什么?它与AI有什么关系?
现如今,AI 这个词已经被玩坏了。很多公司都声称自己在做 AI,但其实并没有。不过有另外一种新兴的 AI,各种类型的 IT 企业倒是可以尝试,而且完全不需要人工参与。
AIOps,也就是基于 算法 的 IT 运维(Algorithmic IT Operations),是由 Gartner 定义的新类别,源自业界之前所说的 ITOA(IT Operations and Analytics)。我们已经到达了这样的一个时代,数据科学和算法正在被用于自动化传统的 IT 运维任务和流程。算法被集成到工具里,帮助企业进一步简化运维工作,把人类从耗时又容易出错的流程中解放出来。人们不再需要在遗留的管理系统中定义和管理无穷无尽的规则和过滤器。
在过去的几年间,一些新技术不断涌现,利用数据科学和 机器学习 来推进日益复杂的企业数字化进程,“AIOps”(Algorithmic IT Operations)因此应运而生。Gartner 的报告宣称,到 2020 年,将近 50% 的企业将会在他们的业务和 IT 运维方面采用 AIOps,远远高于今天的 10%。
为了更好地理解 AIOps 和 AI 的区别,我们需要从头说起。
AI 简史
AI 一词用于描述机器(或软件)模拟人类认知的过程。也就说,机器学习像人类一样思考。40 年代,Alan Turing 掀起了 AI 热潮,但受限于计算机的计算能力,也只发展到今天的这个阶段。
问题是,我们为什么要让机器模仿人类?而为什么有些 AI 应用程序会比其他的更成功?发展 AI 的目的在于解决人类的问题,所以我们会看到像自动驾驶汽车、行为分析这类复杂的解决方案。
话说回来,IT 运维环境有一些不一样的地方。我们不会直接管理人类,我们与应用程序和基础设施打交道。而且它们可能更加复杂和不可预测,因为它们不是人类。
人类思维与机器思维
AIOps 的不同之处在这里体现出来。AIOps 的解决方案专注于解决问题,而且是通过使用基于算法的技术来高度模仿人类(而且以更快的速度和更大的规模)。算法的效率提升了 AIOps 的价值,而相对于人类的智慧——虽然是无限的,但不如机器来得高效。
当然,人类也能进行高效的 IT 运维。AIOps 的目的是为了让我们的生活变得更美好,但是当人类与 AIOps 参合在一起,它们之间的界限就会变得模糊。高级的 AIOps 会使用 神经网络 技术,它会向运维人员学习,然后尝试消除无聊的重复性劳动。
未来的公司
为什么公司需要 AIOps?现代的 IT 环境已经无比的复杂,而且千变万化,需要我们花费大量的时间和资源去监控、去诊断问题、去解决问题。很多公司处于被动的地位。但是如果他们使用了 AIOps,他们就可以利用先进的算法,花更多时间在其他更有意义的工作上,而不是重复地解决相同的问题,或者花时间管理规则和过滤器。
我们所说的规则,可以把它们简单地描述为“如果是这样那么就这么做”,它们能够应付简单的场景,但是很难扩展。相反,算法和机器学习提供了更加灵活的表达方式,不仅强大,而且健壮,能够应付不断变化的需求。这将带来更高的效率和更低的成本。对于厂商来说,他们面临的挑战在于将整个技术方案打包,避免把用户暴露于底层的复杂性当中。光是提供工具是不够的,企业需要招聘数据科学家而不仅仅是工程师。
前行之路
借助智能算法的技术优势,原先人工需要几个小时完成的任务现在通过自动化可以在几秒钟内完成,而且能够得到更好的结果。传统的 IT 运维需要管理大量的告警,极大地分散了企业的注意力,他们需要花很多时间解决无聊的问题,没有时间用于创新。使用 AIOps 可以解决这些问题,把运维人员从纷繁复杂的告警和噪音中解脱出来。各个行业的企业正在采用 AIOps,他们使用这项技术来改进客户的数字体验——银行、娱乐、交通、零售,甚至政府。
尽管 AIOps 还是一个新名词,但并不代表它只是未来的一种趋势而已。在这个数字的年代,任何使用传统技术来管理机器数据的组织要么忽略了信息的价值,要么已经让他们的运维团队不堪重负。随着数据的暴涨,CIO 们应该快速拥抱 AIOps。传统 AI 仍然会在某些领域发挥它的作用,而 AIOps 将为企业带来最直接最深远的价值。
AIOps具体是如何落地的?
AIOps如何落地,还是以具体案例来说比较容易理解。就拿擎创为北京农村商业银行做的项目来说。
项目背景:
近年来数字化转型的步伐愈发变快,随着北京农村商业银行业务规模的扩增以及业务形式的电子化加速,贯穿业务、市场、系统、应用、数据库、中间件、网络、安全等多方面的数据量迅速叠加堆积。然而,这些对于市场而言极具价值的巨量化数据并不集中,它们分散在银行的各中心服务器或设备之中,这使得银行的数据运维工作量越来越大,尤其是在日志的统一管理、监控、信息挖掘等方面极为明显。因此,北京农村商业银行对于信息技术提升和数据管理加强的需求日益加深。
根据监管部门对银行数据治理的相关指引以及中国银监会《商业银行信息科技风险管理指引》(银监发〔2009〕19号)中针对日志文件完整性、存留周期的相关要求,北京农村商业银行最终选择擎创科技助力其完善智能运维建设,保障其业务的平稳高效运行。
解决方案:
根据北京农村商业银行的需求以及现状,擎创科技通过以下手段为其建设运维大数据平台。
通过现分布式高可用,支持横向扩展,随着业务需要随时扩容平台节点;
通过高效数据采集手段,实现对现有IT环境的实时数据采集,打破各个孤立运维工具中的数据孤岛;
对所有运维数据进行集中高效的存储、查询及可视化展示;
支持结构化、非结构化的数据采集支撑;
内置AI智能日志分析引擎,实现日志异常检测、日志异常定位并辅助故障定位。
平台架构图如下:
创新点:
北京农村商业银行在运维大数据平台项目的建设中,采用流批一体的处理技术、流式窗口聚合方式,实现了实时采集、秒级处理、秒级查询,为运维人员提供高效的数据查询手段,为应用人员实现交易数据与日志的深度结合;
采用智能算法判断、故障根因定位,为运维人员提供便捷数据分析工具。充分挖掘了北京农村商业银行的运维数据价值、提升了运维管理水平、提高了运维效率。
建设成效:
建设日志治理平台和大数据平台,实现日志数据统一集中管理、KPI动态异常检测、日志智能聚类等功能。
日志治理+大数据平台(算法),当前日增日志6TB,设计容量10TB,热数据保存30天、冷数据保存3个月,大数据平台日志存档一年、指标类数据两年;
最高峰每秒处理日志500万条日志,其中最高按单笔业务交易日志行数达3000+行,经采集、数据提取、数据合并、数据丰富等数据处理后延时小于1s。
总结:
随着运维大数据平台的建设完成,北京农村商业银行实现了对各类运维日志数据的统一管理,能够对日志进行集中查询、聚类分析、快速分析、精细化分析等操作,结合监控告警的智能化处理,可以做到事前智能预警、事后快速定位故障并分析,进一步提升了银行数据中心的运维管理水平。
AIOps的出现会给智能化时代带来什么样的变化?
Gartner曾预测,到2022年,40%
aiops需求的大型企业将结合大数据和机器学习功能,支持和部分支持替代监测、服务台和自动化流程和任务。利用AIOps进行IT运营,AIOps解决方案的最终目标是让工程师的生活更美好,让运维变得更加简单、智能化。AIOps必将是未来发展的首要趋势。目前具有AIOps的厂商据我
aiops需求了解,听云公司一直是行业的领军者,保障了应用系统的可用性和提升用户体验等,服务过的企业更是多达8000多家,涉及到的公司更是各行各业。
关于aiops需求和aiops产品的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
aiops需求的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于aiops产品、aiops需求的信息别忘了在本站进行查找喔。
暂时没有评论,来抢沙发吧~