NAIE将携手产业各界,共同打造网络AI商业黑土地

网友投稿 631 2023-01-28

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

NAIE将携手产业各界,共同打造网络AI商业黑土地

9月25日,在全连接大会期间的华为NAIE人工智能引擎白皮书发布会上,华为以“云地协同”为抓手,解决AI特性规模应用问题,实现跨厂商云地协同,挖掘业务价值。

AI网络:使能运营商效率革命

然而,5G并不能解决电信业运营模式的痛点,反而增加了业务与运维的复杂度(面临网络复杂性不断提升、OPEX持续增长的挑战),并且,随着5G等新基建的不断深入,电信行业更将面临着结构性的挑战。

从收入结构来看,运营商的业务正遭遇来自IT产业的挑战,随着网络接入速率的大幅提升,导致IT产业从卖产品变成卖服务,骨干网络和IT基础设施逐渐变成云服务的形式,丧失很多传统的电信业务,同时,运营商的效率和成本也面临结构性挑战,无线、IP、光传送等资源未得到最大化利用。

电信网络作为信息通信的基础设施,具有应用人工智能技术的巨大空间和潜力,Tractica/Ovum预测指出,到2025年,全球电信业对人工智能软件、硬件和服务的投资将达380亿美元 ,成为最大的 AI 应用市场。其中,电信业整体AI用例软件市场将以59.8%的年复合增长率从4.19亿美元到2025 年增至112亿美元。

人工智能也给运营商带来了提升效率的机遇。但如何利用人工智能算法提供的强大分析、判断、预测等能力,赋能网元、网络和业务系统,并将其与电信网络的规划、建设、维护、运行和优化等工作内容结合起来,成为电信业关注的重要课题,从2018年开始,为实现网络自动化和智能化,电信行业组织、运营商和设备商纷纷启动技术探索。

与传统网络架构不同,自动驾驶网络是电信网络自动化、智能化方案,将网络能力原子化后形成网络资源,通过集中的网络控制单元将网络资源统一调度,支撑上层业务编排器全局协同的方案,通过自动驾驶网络,实现运营商运营效率的提升,这也是运营商数字化转型的关键部分。

从基础架构来看,自动驾驶网络分为三层智能,首先是底层网元+AI。将物理网络逐步数字化,有效产生和采集更多网络数据,增强实时感知、模式或特征匹配能力,实现网元本地的AI推理应用。

其次是中间层网络+AI。各领域的网络管控单元增加AI网络模型和推理框架,将上层业务和应用意图自动翻译成网络行为,实现单域自治闭环,使网络连接或功能的 SLA 可承诺,实现在线智能。

最后是上层云端+AI,云端定位网络智能服务平台,提供能力编排与共享中心、AIOps 中心、现场服务支持中心三大能力中心。

然而,要解决电信业面临的挑战,仅仅靠产品创新远远不够,需要整个系统架构创新和商业模式创新,才能提升运营商的竞争力。

云地协同:“化繁为简”实现AI特性规模应用

近年来,全球业界各方在网络AI方面纷纷进行积极的探索和实践,经过验证在运维效率、能耗效率、网络资源利用率以及用户业务体验提升等方面确实能够带来价值,电信产业走向智能化已经成为整个行业的共识。

华为自推出iMaster NAIE 网络AI云服务后在AI领域取得的成绩有目共睹,然而,网络AI在走向规模化工程应用的过程中,仍存在模型泛化能力差、模型易老化、本地样本少等诸多挑战,对此,华为创造性的提出“云地协同”理念,实现AI特性规模应用,加速推进自动驾驶网络。

记者了解到,华为提出的“云地协同”中云端是指部署在公有云、合营云或HCS上的NAIE云端智能,可以提供一系列网络AI服务,比如数据服务、模型训练服务等;而地端,是指集成在网络管控单元的网络 AI、以及网元设备中的网元AI,他们一方面承担本地的模型推理,同时也具备有限的在线学习能力。

云地协同,则是将云端和地端一起协作完成数据样本上云,把云端汇集的全局网络知识经验、全量数据训练得到的高精度模型,持续注入地端,让电信网络能够进行智能的迭代升级,变得越来越聪明。

而根据此架构打造的云地协同也呈现出三大特征,一是云端和地端要有通道;二是地端到云端,信息可以从运营商上传到云端,包括数据样本、模型状态、以及重训练请求等信息,三是云端到地端可以下发新的模型,同时网络知识库里的知识也可以注入到地端。

众所周知,要实现网络的自动驾驶,必然是长期的过程,不可能一蹴而就,而云地协同在实际应用部署时也分为三个阶段,针对针对不同场景可以选择适合的阶段,最终大幅提高网络的资源效率。

第一阶段是云端进行初始模型的训练,运行态由地端根据新增的样本进行在线学习。这种模式主要是适用于模型相对简单,算法结构比较稳定的场景,只需要根据本地数据进行在线学习,优化调整模型参数。

第二阶段是云端进行模型的分发,然后在地端根据新增样本进行在线学习。通过云端对模型的持续优化,将优化后模型推送到地端,地端根据评估结果进行模型择优更新。这种模式适合于模型相对复杂,需要持续进行模型算法结构优化的场景。

宏观来说,云地协同的模式是将复杂的智慧运维不断拆分细化,AI的特性在一个局点成功实施后,快速的形成知识和经验,在其他局点进行复制,最终实现一点生效,全网复制,加速拓展规模应用。

撬动行业智能升级:迈向智能时代

当前,大中小企业之间的合作正从以供应链为纽带的浅层次协同协作转变为端到端的深层次融合融通,而华为NAIE以“云地协同”为抓手,解决AI特性规模应用问题,在构建产业良性生态的同时,也加速实现迈向自动驾驶网络的愿景。

但需要指出的是,在网络AI模型开发中需要既懂AI知识又熟悉网络业务的人才,电信领域专家AI积累少,算法科学家不懂电信业务,而模型训练要依赖大量并且昂贵的计算资源,导致试错成本高、开发效率低。

对此,华为推出NAIE训练平台,提供一站式高效模型训练,集成业界通用的主流AI算法框架,内嵌华为在网络领域30多年的知识和经验沉淀,支持电信领域的特征处理,并内置电信领域AI典型算法,满足不同层次的人员对于模型开发的需求。

上一篇:历史上第一个聊天机器人Eliza:仅仅只有200行代码
下一篇:包含事件通知海报图片大全高清的词条
相关文章

 发表评论

暂时没有评论,来抢沙发吧~