网络智能运维平台(运维 平台)

来源网友投稿 896 2023-01-27

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈网络智能运维平台,以及运维 平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享网络智能运维平台的知识,其中也会对运维 平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

智能运维管理平台是如何进行运维管理的?

IT运维从传统走向智慧,首先要经历数字化运维阶段,搭建数字运维中台既是实现运维数据有效治理的前提和基础,也是推进运维数智化转型的第一步。针对上述需求,擎创科技自主研发的擎创夏洛克AIOps智慧运营平台(如下图所示)可通过数字运维中台,对运维数据进行统一的采集存储和管理,即便面对高达100TB的日增数据量,也可进行秒级实时分析,为异常检测、根因定位等场景奠定坚实基础。


擎创夏洛克AIOps智慧运营平台架构


与传统运维方式相比,智能化运维最突出的优势是“数据大集中”,即基于数字运维中台建设,通过统一监控中心来集中管理和分析所有运维数据,并以业务视角观测运维数据的相关性,最终建立智能化场景来解决实际问题。擎创自主研发的智能运维产品——夏洛克AIOps智慧运营平台,刚好为此量身定制。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。


擎创夏洛克AIOps智慧运营平台架构


目前,夏洛克AIOps已在政府机关组织、银行业、证券保险业和交通运输业等行业场景中应用落地,极大节省了企业客户的人力成本和资金成本,提升了运维的有效性和质量。例如,通过为客户构建智能运维平台,轻松应对日增80TB的数据量,让客户平均故障修复时间(MTTR)缩短150%以上,运维总体拥有成本(TCO)下降80%以上。

阿里云的智能运维平台是什么

智能运维系统是阿里云Elasticsearch(简称ES)的辅助产品,提供集群、节点、索引等二十余个诊断项的健康检测功能。
通过智能运维系统,您可以探测集群潜在风险,寻找最佳解决方案。同时智能运维系统还会自动归纳集群诊断结果,帮助您掌握集群最新态势,提取关键信息,让开发更便捷。智能运维系统支持以下功能:
开启或关闭智能运维服务、查看集群概况、诊断集群健康状况、支持定时诊断和自主诊断,并且可以选择诊断索引和诊断项、查看历史诊断报告。

智能运维平台系统是什么

智能运维平台网络智能运维平台,又称AIOps网络智能运维平台,是将AI赋能于IT传统运维,通过对日志、指标、Trace等数据的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。

一套完整的智能运维平台系统,通常包括:

(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。

(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案

(3)告警辨析中心:智能化集中告警,构建闭环告警管理

(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析

(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测

(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景

智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次

智能运维服务都有哪些功能以及效果呢?

智能运维是一种全新的数字化运维能力,且是企业数字化转型的必备能力。智能运维的本质是提升运维数据的认知能力,它在提升运维数据治理能力、优化企业业务数字化风险、降低运维人力成本和提升运维在业务侧的影响力方面都有本质的提升。

智能运维,又称AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。

比如以我们公司的夏洛克AIOps智慧运营平台为例。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,尽早布局才能在数字化时代不会被淘汰。

互联网时代的网络自动化运维

互联网时代的网络自动化运维

互联网上有两大主要元素"内容和眼球","内容"是互联网公司(或称ICP)提供的网络服务,如网页、游戏、即时通信等,"眼球"则是借指海量的互联网用户。互联网公司的内容往往分布在多个或大或小的IDC中,越来越多的"眼球"在盯着ICP所提供的内容,互联网公司进行内容存储的基础设施也呈现出网络智能运维平台了爆发式的增长。为了保障对内容的访问体验,互联网公司需要在不同的运营商、不同的省份/城市批量部署业务服务器用以对外提供服务,并为业务模块间的通信建立IDC内部网络、城域网和广域网,同时通过自建CDN或CDN专业服务公司对服务盲点进行覆盖。因此随着业务的增长,运维部门也显得愈发重要。他们经过这些年的积累,逐步形成了高效的运维体系。本文将结合国内互联网公司的经验,重点针对IT基础设施的新一代自动化运维体系展开讨论。

一、运维的三个阶段

● 第一个阶段网络智能运维平台:人人皆运维

在早期,一个公司的IT基础设施尚未达到一定的规模(通常在几台到几十台机器的规模),不一定有专门的运维人员或部门,运维的工作分担在各类岗位中。研发人员拥有服务器权限,自己维护和管理线上代码及业务。

● 第二个阶段网络智能运维平台:纵向自动化

随着业务量的增长,IT基础设施发展到了另外一个量级(通常在上百台至几千台机器的规模),开始有专门的运维人员,从事日常的安装维护工作,扮演"救火队员",收告警,有运维规范,但运维主要还是为研发提供后置服务。

这个阶段已经开始逐步向流程化处理进行过渡,运维部门开始输出常见问题处理的清单,有了自己业务范围适用的自动化脚本,开始利用开源软件的拼装完成大部分的工作。

具体表现为:各产品线有自己编写的脚本,利用如SVN+puppet或chef来完成服务器的上线和配置管理等工作。

● 第三阶段:一切皆自动

在互联网化的大潮中,越来越多的黑马团队应运而生,都曾有过短时间内用户访问量翻N倍的经历。在流量爆发的过程中,ICP的互联网基础服务设施是否能够很好的跟进,直接决定了业务内容能否满足海量用户的并发访问。

与此同时,运维系统需要足够地完善、高效、流程化。谷歌、腾讯、百度和阿里等规模的公司内一般都有统一的运维团队,有一套或多套自动化运维系统可供参照,运维部门与开发部门会是相互平行的视角。并且也开始更加关注IT基础设施在架构层面的优化以及超大规模集群下的自动化管理和切换(如图1所示)。

图1.大型互联网公司IT基础设施情况概览

二、BAT(百度、阿里、腾讯)运维系统的分析

国内的互联网公司百度、阿里、腾讯(以下简称:BAT)所提供的主要业务内容不同,IT架构不同,运维系统在发展过程中有不同的关注点。

1.腾讯运维:基于ITIL的运维服务管理

预计到2015年腾讯在全国将拥有60万台服务器。随着2012年自动化部署实践的成功,目前正在进行自动化验收的工作。在网络设备方面,后续将实现从需求端开始的全自动化工作:设备清单自动生成-采购清单自动下发-端口连接关系、拓扑关系自动生成-配置自动下发-自动验收。整个运维流程也已由初期的传统IT管理演进到基于ITIL的服务管理流程(如图2所示)。

图2.腾讯基于ITIL的运维服务管理

2.阿里运维系统:基于CMDB的基础设施管理+逻辑分层建模

CMDB(Configuration Management Database) 配置管理数据库(以下简称:CMDB),将IT基础架构的所有组件存储为配置项,维护每个配置项的详细数据,维护各配置项之间的关系数据以及事件、变更历史等管理数据。通过将这些数据整合到中央存储库,CMDB可以为企业了解和管理数据类型之间的因果关系提供保障。同时,CMDB与所有服务支持和服务交付流程都紧密相联,支持这些流程的运转、发挥配置信息的价值,同时依赖于相关流程保证数据的准确性。可实现IT服务支持、IT运维以及IT资产管理内部及三者之间的流程整合与自动化。在实际的项目中,CMDB常常被认为是构建其它ITIL流程的基础而优先考虑,ITIL项目的成败与是否成功建立CMDB有非常大的关系。

3.百度自动化运维:部署+监控+业务系统+关联关系

百度主要面临的运维挑战包括:突发的流量变化、复杂环境的关联影响、快速迭代的开发模式以及运维效率、运维质量、成本之间的平衡等等。百度的运维团队认为,当服务器规模达到上万台时,运维视角需要转为以服务为粒度。万台并不等于"百台*100";机器的运行状态,也不再代表业务的工作状态;运维部门为研发提供前置服务,服务与服务之间关系也随着集群的扩大逐渐复杂起来。

图3.百度自动化运维技术框架

百度的自动化运维技术框架,划分为部署、监控、业务系统、关联关系四大部分,整个框架更多突出了业务与IT基础设施的融合,注重"关联关系"的联动。所谓关联关系,主要是指任务与任务之间的时序依赖关系、任务与任务之间的数据依赖关系、任务与资源之间的引用依赖关系,分别对应到任务调度、数据传输、资源定位的服务流程中,形成了多条服务链。

关联关系的运维与业务较强相关,需要有一套系统能够理清楚关系的全貌,从而在复杂的服务链上,定位运行所在的环节,并在发生故障时预估影响范围,及时定位并通知相应的部门。在这样的一套系统中,自动化监控系统非常重要。百度的技术监控框架,主要通过数据采集、服务探测、第三方进行信息收集,进行监控评估后交给数据处理和报警联动模块处理,通过API接口进行功能扩充(如图4所示)。

图4.百度自动化技术监控框架

其实无论是BAT等互联网企业还是其他行业的企业,在IT建设中都会遵循IT基础架构库(ITIL)或ISO20000服务管理的最佳实践,采用自动化IT管理解决方案以实现重要的业务目标,如减少服务中断、降低运营成本、提高IT效率等等。随着ISO20000、ITIL v3.0的发布和推广,两者已经成为事实上的某种标准。在当今企业IT管理领域,对两个标准有着很迫切的需求。特别是ISO20000的认证要求,已经成为企业越来越普遍的需求 。ITIL v3.0包含了对IT运维从战略、设计到转换、运营、改进的服务全生命周期的管理,相关方案往往覆盖了多个领域和多个产品,规划实施和工具的选择会比较纠结。如果选择开源的工具,从CMDB开始就会遇到很多的开发工作,对于很多注重成本收益比的企业,可以参考,但由于无法保证性能与效果并不一定适用。因此,成熟的商业方案会是更好的选择。

最新的iMC V7版本,围绕资源、用户、业务三个维度进行创新,发布了SOM服务运维管理(基于ISO20000、ITIL标准)等组件,增加了对服务器的管理,能很好的满足更多互联网化的场景需求。

通常认为,一个高效、好用的配置管理数据库一般需要满足6条重要标准,即联合、灵活的信息模型定义、标准合规、支持内置策略、自动发现和严格的访问控制。企业IT基础架构的元素类型、管理数据的类型往往有较多种,如网络设备、服务器、虚拟机等,因此对于多种信息的存储需要有合适的联合的方法。虽然 iMC智能管理平台在网络设备、服务器设备等方面已经能够较好的的满足,但是随着服务器虚拟化技术的发展,虚拟机正越来越多的成为IT基础架构的一大元素。因此,针对这一需求华三通信基于CAS CVM虚拟化管理系统,对服务器CPU、内存、磁盘I/O、网络I/O等更细节的重要资源以及虚拟机资源进行全面的管理。与BAT不同,华三通信的网管软件面向全行业,目前虽然没有对域名管理等特殊资源的'管理,但是能够通过API接口等方式与特有系统进行联动,进而满足定制化运维的需求,尤其是在互联网化的场景中,针对不同的业务需求,可以实现很多定制化的对接需求,例如,iMC+WSM组件与国内某大互联网公司自有Portal系统进行了对接,打通了iMC工具与用户自有运维平台,很好的实现了架构融和。另外,与阿里的逻辑分层建模相似,H3C "iMC+CAS"软件体系在上层也做了很多的逻辑抽象、分层,形成了诸多的模块,也即是大家看到的各种组件。

三、网络自动化运维体系

"哪怕是一个只有基础技术能力的陌生人,也能做专业的IT运维;哪怕是一个只有初中学历的运维人员,也能够带队完成中小型机房节点的建设,并负责数百至上千台服务器的维护管理工作"--这是一些公司对自己IT运行维护水平的一个整体评价。看似有些夸大的嫌疑,但实际上依托于强大的IT运维系统,国内已经有不少互联网公司能够达到或者接近这一标准。

这些企业都经历了运维发展过程中的各个阶段,运维部门曾经也是被动的、孤立的、分散的"救火队"式的团队,在后来的发展过程中,IT系统架构逐渐走向标准化、模型化,运维部门建立了完整的设备、系统资源管理数据库和知识库,包括所有硬件的配置情况、所有软件的参数配置,购买日期、维修记录,运维风险看板等等,通过网管软件,进行系统远程自动化监控。运维过程中系统会收集所有的问题、事件、变更、服务级别等信息并录入管理系统,不断完善进而形成一套趋向自动化的运作支撑机制。按照云计算的体系架构,在这样一套系统中,主要的IT资源包括计算、存储、网络资源,近些年随着网络设备厂商的推动,网络设备管理方面的自动化技术也得到十足的发展。

总结来看,一个企业在进行互联网化的建设初期,就需要考虑到随着用户访问量的增加,资源如何进行扩展。具体可以细化为规划、建设、管理、监控、运维五个方面。

1.规划模型化

为了确保后续业务能够平滑扩容,网管系统能够顺利跟进,互联网企业一般在早期整体系统架构设计时便充分考虑到标准化、模型化,新增业务资源就好比点快餐,随需随取。

标准化:一是采用标准协议和技术搭建,扩展性好,使用的产品较统一,便于管理;二是采用数据中心级设备,保证可靠性、灵活性,充分考虑业务系统对低时延的要求。

模型化:基于业务需求设计网络架构模型,验证后形成基线,可批量复制,统一管理,也适宜通过自动化提高部署效率、网管效率。

图5.常见互联网IDC架构

2.建设自动化

互联网IT基础设施具备批量复制能力之后,可以通过自动化技术,提高上线效率。在新节点建设过程中,3~5人的小型团队即可完成机房上线工作。例如某互联网公司某次针对海外紧急业务需求,一共派遣了2名工程师到现场进行设备安装部署和基本配置,而后通过互联网链路,设备从总部管理系统中自动获取配置和设备版本,下载业务系统,完成设备安装到机房上线不超过1周时间。

要达到自动化运维的目标,建设过程中需要重点考虑批量复制和自动化上线两个方面(如图6所示)。

批量复制:根据业务需要,梳理技术关注点,设计网络模型,进行充分测试和试点,输出软、硬件配置模板,进而可进行批量部署。

自动化上线:充分利用TR069、Autoconfig等技术,采用零配置功能批量自动化上线设备,效率能够得到成倍提升。

图6.批量配置与自动化上线

○ Autoconfig与TR069的主要有三个区别:

○ Autoconfig适用于零配置部署,后续一般需要专门的网管系统;TR069是一套完整的管理方案,不仅在初始零配置时有用,后续还可以一直对设备进行监控和配置管理、软件升级等。

○ Autoconfig使用DHCP与TFTP--简单,TR069零配置使用DHCP与HTTP--复杂,需要专门的ACS服务器。

安全性:TR069更安全,可以基于HTTPS/SSL。

而H3C iMC BIMS实现了TR-069协议中的ACS(自动配置服务器)功能,通过TR-069协议对CPE设备进行远程管理,BIMS具有零配置的能力和优势,有灵活的组网能力,可管理DHCP设备和NAT后的私网设备。BIMS的工作流程如图7所示。

图7.H3C iMC BIMS工作流程

3.管理智能化

对于网管团队而言,需要向其他团队提供便利的工具以进行信息查询、告警管理等操作。早期的网管工具,往往离不开命令行操作,且对于批量处理的操作支持性并不好,如网络设备的MIB库相比新的智能化技术Netconf,好比C和C++,显得笨拙许多。因此使用的角度考虑,图形化、智能化的管理工具,往往是比较受欢迎。

智能化:使用新技术,提升传统MIB式管理方式的处理效率,引入嵌入式自动化架构,实现智能终端APP化管理(如图8所示)。

图8.消息、事件处理智能化

● Netconf技术

目前网络管理协议主要是SNMP和Netconf。SNMP采用UDP,实现简单,技术成熟,但是在安全可靠性、管理操作效率、交互操作和复杂操作实现上还不能满足管理需求。Netconf采用XML作为配置数据和协议消息内容的数据编码方式,采用基于TCP的SSHv2进行传送,以RPC方式实现操作和控制。XML可以表达复杂、具有内在逻辑、模型化的管理对象,如端口、协议、业务以及之间的关系等,提高了操作效率和对象标准化;采用SSHv2传送方式,可靠性、安全性、交互性较好。二者主要对比差异如表1所示。

表1 网管技术的对比

● EAA嵌入式自动化架构

EAA自动化架构的执行包括如下三个步骤。

○ 定义感兴趣的事件源,事件源是系统中的软件或者硬件模块,如:特定的命令、日志、TRAP告警等。

○ 定义EAA监控策略,比如保存设备配置、主备切换、重启进程等。

○ 当监控到定义的事件源发生后,触发执行EAA监控策略。

4.监控平台化

利用基本监控工具如Show、Display、SNMP、Syslog等,制作平台化监控集成环境,实现全方位监控(如图所示)。

;

践行AI战略:华为引领数据中心网络迈入人工智能时代

AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。

但在崭新的AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。

为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。

AI时代数据中心网络面临三大挑战

当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策建议和智慧化的行为指引。

根据华为GIV 2025(Global Industry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。

作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。

华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:

挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。

挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。

挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。

华为定义AI时代数据中心交换机三大特征

从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。

那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”

特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力

从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。

但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。

CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存储IOPS(Input/Output Operations Per Second)性能提升30%。

特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求

数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。

集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。

为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。

特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位

当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。

CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。

引领数据中心网络从云时代迈入AI时代

自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。

2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。

早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务弹性伸缩、自动化部署等核心诉求。

而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。

2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。

而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。

关于网络智能运维平台和运维 平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 网络智能运维平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于运维 平台、网络智能运维平台的信息别忘了在本站进行查找喔。
上一篇:2018年第二季小米电视出货量登顶中国第一靠的是什么
下一篇:网络IT智能运维平台(全网it智能运维平台)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~