智能运维平台的意义(什么是运维平台)

来源网友投稿 905 2023-01-20

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈智能运维平台的意义,以及什么是运维平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享智能运维平台的意义的知识,其中也会对什么是运维平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

智能运维有哪些好处?

随着企业数字化转型的加速智能运维平台的意义,IT运维数据也迎来了爆发式增长,随之产生了更多的挑战。对于众多企业来说,在IT建设的过程中都部署过各种运维工具,但各类监控数据只会保存并做固定阈值的简单告警,这些数据互相之间不通,无法对数据进行统一分析。传统运维工作依赖工程师的经验,难以复制和留存。

部署智能运维系统后,能有效地解决这些痛点,提高运维效率。即便是现有的工程师数量也能应对数百倍增长的数据和系统。

完整的智能运维系统包含智能运维平台的意义

(1)数字运维中台智能运维平台的意义:提供数据治理服务、流批一体化服务和AI算法平台服务。

(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案

(3)告警辨析中心:智能化集中告警,构建闭环告警管理

(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析

(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测

(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景

简单说来,就像智能手机最终替代传统手机一样,未来的IT运维也会由智能运维统领。除了实现运维工作的降本增效外,更能提供业务视角的观测,彰显运维数据的业务价值。(这一点已在多个客户处被验证)

智能运维平台系统是什么

智能运维平台智能运维平台的意义,又称AIOps智能运维平台的意义,是将AI赋能于IT传统运维智能运维平台的意义,通过对日志、指标、Trace等数据智能运维平台的意义的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。

一套完整的智能运维平台系统,通常包括智能运维平台的意义

(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。

(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案

(3)告警辨析中心:智能化集中告警,构建闭环告警管理

(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析

(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测

(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景

智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次

什么是IT智能运维?

IT智能运维必须以大数据为基础,所以企业必须具有采集IT全层级数据的能力,并能实现数据融合,结合机器学习、智能算法,对IT运维实现洞察,获得预见性。
现在推IT智能运维的服务商国内有几家,我比较认可博睿数据提出的数据为本的理念,没有数据就是无水之源,所以企业别被概念忽悠,先踏实做数据采集和融合,智能运维是水到渠成的事

智能运维是什么?

得益于IT外包服务的发达,现在的运维已经不包括搬机器上架、接网线、安装操作系统等基础工作,运维人员一般会从一台已安装好指定版本的操作系统、分配好IP地址和账号的服务器入手,工作范围大致包括:服务器管理(操作系统层面,比如重启、下线)、软件包管理、代码上下线、日志管理和分析、监控(区分系统、业务)和告警、流量管理(分发、转移、降级、限流等),以及一些日常的优化、故障排查等。
随着业务的发展、服务器规模的扩大,才及云化(公有云和混合云)、虚拟化的逐步落实,运维工作就扩展到了容量管理、弹性(自动化)扩缩容、安全管理,以及(引入各种容器、开源框架带来的复杂度提高而导致的)故障分析和定位等范围。
听上去每一类工作都不简单。不过,好在这些领域都有成熟的解决方案、开源软件和系统,运维工作的重点就是如何应用好这些工具来解决问题。
传统的运维工作经过不断发展(服务器规模的不断扩大),大致经历了人工、工具和自动化、平台化和智能运维(AIOps)几个阶段。这里的AIOps不是指Artificial Intelligence for IT Operations,而是指Algorithmic IT Operations(基于Gartner的定义标准)。
基于算法的IT运维,能利用数据和算法提高运维的自动化程度和效率,比如将其用于告警收敛和合并、Root分析、关联分析、容量评估、自动扩缩容等运维工作中。
在Monitoring(监控)、Service Desk(服务台)、Automation(自动化)之上,利用大数据和机器学习持续优化,用机器智能扩展人类的能力极限,这就是智能运维的实质含义。
智能运维具体的落地方式,各团队也都在摸索中,较早见效的是在异常检测、故障分析和定位(有赖于业务系统标准化的推进)等方面的应用。智能运维平台逻辑架构如图所示。
智能运维平台逻辑架构图
智能运维决不是一个跳跃发展的过程,而是一个长期演进的系统,其根基还是运维自动化、监控、数据收集、分析和处理等具体的工程。人们很容易忽略智能运维在工程上的投入,认为只要有算法就可以了,其实工程能力和算法能力在这里同样重要。
智能运维需要解决的问题有:海量数据存储、分析、处理,多维度,多数据源,信息过载,复杂业务模型下的故障定位。这些难题是否会随着智能运维的深入应用而得到一定程度的解决呢?我们会在下一篇文章中逐步展开这些问题,并提供一些解决方案。
本文选自《智能运维:从0搭建大规模分布式AIOps系统》,作者彭冬、朱伟、刘俊等,电子工业出版社2018年7月出版。
本书结合大企业的智能运维实践,全面完整地介绍智能运维的技术体系,让读者更加了解运维技术的现状和发展。同时,帮助运维工程师在一定程度上了解机器学习的常见算法模型,以及如何将它们应用到运维工作中。

为什么说智能化运维保障了企业数字化转型?

著名科技趋势分析组织Gartner将数字化转型细分为信息数字化、业务数字化两个方面。在企业的业务流程中,对于已经由信息技术支撑的业务品种来说,信息数字化即通过相应的技术令其过程数据得以留存,并利用其提升及优化业务运行效率;而对于不具备信息技术支撑的业务品种,就需要通过新技术的运用构建相应的数字化业务。

无论是信息数字化,还是业务数字化,在其背后都会涌现日益复杂的业务系统、基础架构和日益增长的运维数据,这对于企业运维而言,都是非常巨大的挑战。

在传统运维方式下,工具众多但各自为政、数据处理和实时分析能力薄弱且依赖于经验和规则,导致故障的根因定位十分困难,解决问题效率非常低下,运维的实用性就大打折扣。因此必须借助一定的手段和方式,如对客户的IT运维数据实现全量的集中化管理,实现数据实时处理、智能分析和预测,进行多维度高效根因定位。

而这些都是智能运维AIOps所具备的。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

所以,智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。

关于智能运维平台的意义和什么是运维平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能运维平台的意义的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么是运维平台、智能运维平台的意义的信息别忘了在本站进行查找喔。
上一篇:各国是怎样角逐人工智能的
下一篇:包含事件通知文案模板下载软件的词条
相关文章

 发表评论

暂时没有评论,来抢沙发吧~