睿象云智能告警平台的分派策略
905
2023-01-20
本文目录一览:
随着企业数字化转型的加速智能运维平台的意义,IT运维数据也迎来了爆发式增长,随之产生了更多的挑战。对于众多企业来说,在IT建设的过程中都部署过各种运维工具,但各类监控数据只会保存并做固定阈值的简单告警,这些数据互相之间不通,无法对数据进行统一分析。传统运维工作依赖工程师的经验,难以复制和留存。
部署智能运维系统后,能有效地解决这些痛点,提高运维效率。即便是现有的工程师数量也能应对数百倍增长的数据和系统。
完整的智能运维系统包含智能运维平台的意义:
(1)数字运维中台智能运维平台的意义:提供数据治理服务、流批一体化服务和AI算法平台服务。
(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案
(3)告警辨析中心:智能化集中告警,构建闭环告警管理
(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析
(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测
(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景
简单说来,就像智能手机最终替代传统手机一样,未来的IT运维也会由智能运维统领。除了实现运维工作的降本增效外,更能提供业务视角的观测,彰显运维数据的业务价值。(这一点已在多个客户处被验证)
智能运维平台智能运维平台的意义,又称AIOps智能运维平台的意义,是将AI赋能于IT传统运维智能运维平台的意义,通过对日志、指标、Trace等数据智能运维平台的意义的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。
一套完整的智能运维平台系统,通常包括智能运维平台的意义:
(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。
(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案
(3)告警辨析中心:智能化集中告警,构建闭环告警管理
(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析
(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测
(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景
智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次
著名科技趋势分析组织Gartner将数字化转型细分为信息数字化、业务数字化两个方面。在企业的业务流程中,对于已经由信息技术支撑的业务品种来说,信息数字化即通过相应的技术令其过程数据得以留存,并利用其提升及优化业务运行效率;而对于不具备信息技术支撑的业务品种,就需要通过新技术的运用构建相应的数字化业务。
无论是信息数字化,还是业务数字化,在其背后都会涌现日益复杂的业务系统、基础架构和日益增长的运维数据,这对于企业运维而言,都是非常巨大的挑战。
在传统运维方式下,工具众多但各自为政、数据处理和实时分析能力薄弱且依赖于经验和规则,导致故障的根因定位十分困难,解决问题效率非常低下,运维的实用性就大打折扣。因此必须借助一定的手段和方式,如对客户的IT运维数据实现全量的集中化管理,实现数据实时处理、智能分析和预测,进行多维度高效根因定位。
而这些都是智能运维AIOps所具备的。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:
运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;
业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;
运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;
业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;
所以,智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。
发表评论
暂时没有评论,来抢沙发吧~