aiops异常检测技术(aiops 异常检测)

来源网友投稿 738 2023-01-20

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops异常检测技术,以及aiops 异常检测对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享aiops异常检测技术的知识,其中也会对aiops 异常检测进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps:有大量服务器监控指标的情况下如何做异常检测?

在搭建服务器时,除了部署webapp之外,还需要服务的异常信息与服务器性能指标进行监控,一旦有异常则通知管理员。
服务器使用Linux+Nginx-1.9.15+Tomcat7+Java搭建的。
编写脚本检测错误日志和服务器性能指标,一旦新生错误日志或者性能降低到设定的阈值时,则使用云监控将报警上传到云账号。
服务运行监控
错误日志包含以下三个方面:
nginx 错误信息监控(nginx.conf配置)
${NGINX_HOME}/logs/error.log
tomcat 错误信息监控(server.xml配置)
${TOMCAT_HOME}/logs/catalina.out
webapp错误信息监控(log4j)
${WEBAPP_HOME}/log/error

相比传统运维工具,AIOps的优势在哪里

智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

为什么很多大型企业都在采用AIOps?

这是因为目前,IT运维管理面临着两难境地的巨大挑战,一方面要降低成本,另一方面其复杂度又不断攀升。主要体现在数据量巨大、数据类型繁多和数据生成速度快三个维度:

IT基础架构和应用程序产生的数据量快速增长(年增长2-3倍)

机器和人工生成的数据类型越来越多(例如指标、日志、网络数据和知识管理文档)

由于采用了云架构和其他临时性的架构,数据生成速度不断提高,IT架构内变化速率也在提高

鉴于现代企业所需的洞察力,对这三个维度进行权衡的代价将相当巨大。因此,越来越多的客户对AIOps越来越感兴趣,并想通过大数据和机器学习技术来分析服务台的有效性,以此参与到故障和问题解决流程中去。IT组织还开始在DevOps环境中探索AIOps,将其作为持续集成/持续交付(CI/CD)周期的一部分,便于在部署之前预测潜在的问题,并检测潜在的安全问题。

AIOps分析的应用超越了其最初的使用范围,而成为IT运维中事件关联和分析的最佳解决方案。

如何通过AIOps手段增加运维效能和降低运维成本,对于企业来说都是很大的挑战。而致力于智能运维AIOps领域的擎创科技,已经为国内多家银行和证券用户成功部署夏洛克AIOps平台,助力企业运维降本增效:

强大自研数据采集器:支持Linux、Windows、AIX等多种系统,可采集除日志外的性能数据、网络数据、CMDB数据等各类数据;

创新的数据流处理方式:单数据流峰值每秒采集350000 条,可处理日增数据30TB;

人工智能算法:与复旦大学运维实验室共研10+种人工智能算法,异常检测和根因定位更容易。

目前,AIOps主要用于IT运维,且在企业中日益占据主导地位,而一些成熟的组织已正在利用该技术为企业领导者提供决策支撑。企业基础设施与运维负责人应该尽早启动AIOps平台部署工作,优化当前的性能分析,并在未来两年至五年内扩展至IT服务管理和自动化领域。

关于aiops异常检测技术和aiops 异常检测的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 aiops异常检测技术的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于aiops 异常检测、aiops异常检测技术的信息别忘了在本站进行查找喔。
上一篇:包含事件通知文案朋友圈图片的词条
下一篇:Flippy是世上第一个由人工智能提供动力的自动机器人厨房助手
相关文章

 发表评论

暂时没有评论,来抢沙发吧~