aiops用于汽车行业(ai在汽车领域的应用)

来源网友投稿 743 2023-01-19

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈aiops用于汽车行业,以及ai在汽车领域的应用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享aiops用于汽车行业的知识,其中也会对ai在汽车领域的应用进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps是什么?它与AI有什么关系?

现如今,AI 这个词已经被玩坏了。很多公司都声称自己在做 AI,但其实并没有。不过有另外一种新兴的 AI,各种类型的 IT 企业倒是可以尝试,而且完全不需要人工参与。

AIOps,也就是基于 算法 的 IT 运维(Algorithmic IT Operations),是由 Gartner 定义的新类别,源自业界之前所说的 ITOA(IT Operations and Analytics)。我们已经到达了这样的一个时代,数据科学和算法正在被用于自动化传统的 IT 运维任务和流程。算法被集成到工具里,帮助企业进一步简化运维工作,把人类从耗时又容易出错的流程中解放出来。人们不再需要在遗留的管理系统中定义和管理无穷无尽的规则和过滤器。

在过去的几年间,一些新技术不断涌现,利用数据科学和 机器学习 来推进日益复杂的企业数字化进程,“AIOps”(Algorithmic IT Operations)因此应运而生。Gartner 的报告宣称,到 2020 年,将近 50% 的企业将会在他们的业务和 IT 运维方面采用 AIOps,远远高于今天的 10%。

为了更好地理解 AIOps 和 AI 的区别,我们需要从头说起。

AI 简史

AI 一词用于描述机器(或软件)模拟人类认知的过程。也就说,机器学习像人类一样思考。40 年代,Alan Turing 掀起了 AI 热潮,但受限于计算机的计算能力,也只发展到今天的这个阶段。

问题是,我们为什么要让机器模仿人类?而为什么有些 AI 应用程序会比其他的更成功?发展 AI 的目的在于解决人类的问题,所以我们会看到像自动驾驶汽车、行为分析这类复杂的解决方案。

话说回来,IT 运维环境有一些不一样的地方。我们不会直接管理人类,我们与应用程序和基础设施打交道。而且它们可能更加复杂和不可预测,因为它们不是人类。

人类思维与机器思维

AIOps 的不同之处在这里体现出来。AIOps 的解决方案专注于解决问题,而且是通过使用基于算法的技术来高度模仿人类(而且以更快的速度和更大的规模)。算法的效率提升了 AIOps 的价值,而相对于人类的智慧——虽然是无限的,但不如机器来得高效。

当然,人类也能进行高效的 IT 运维。AIOps 的目的是为了让我们的生活变得更美好,但是当人类与 AIOps 参合在一起,它们之间的界限就会变得模糊。高级的 AIOps 会使用 神经网络 技术,它会向运维人员学习,然后尝试消除无聊的重复性劳动。

未来的公司

为什么公司需要 AIOps?现代的 IT 环境已经无比的复杂,而且千变万化,需要我们花费大量的时间和资源去监控、去诊断问题、去解决问题。很多公司处于被动的地位。但是如果他们使用了 AIOps,他们就可以利用先进的算法,花更多时间在其他更有意义的工作上,而不是重复地解决相同的问题,或者花时间管理规则和过滤器。

我们所说的规则,可以把它们简单地描述为“如果是这样那么就这么做”,它们能够应付简单的场景,但是很难扩展。相反,算法和机器学习提供了更加灵活的表达方式,不仅强大,而且健壮,能够应付不断变化的需求。这将带来更高的效率和更低的成本。对于厂商来说,他们面临的挑战在于将整个技术方案打包,避免把用户暴露于底层的复杂性当中。光是提供工具是不够的,企业需要招聘数据科学家而不仅仅是工程师。

前行之路

借助智能算法的技术优势,原先人工需要几个小时完成的任务现在通过自动化可以在几秒钟内完成,而且能够得到更好的结果。传统的 IT 运维需要管理大量的告警,极大地分散了企业的注意力,他们需要花很多时间解决无聊的问题,没有时间用于创新。使用 AIOps 可以解决这些问题,把运维人员从纷繁复杂的告警和噪音中解脱出来。各个行业的企业正在采用 AIOps,他们使用这项技术来改进客户的数字体验——银行、娱乐、交通、零售,甚至政府。

尽管 AIOps 还是一个新名词,但并不代表它只是未来的一种趋势而已。在这个数字的年代,任何使用传统技术来管理机器数据的组织要么忽略了信息的价值,要么已经让他们的运维团队不堪重负。随着数据的暴涨,CIO 们应该快速拥抱 AIOps。传统 AI 仍然会在某些领域发挥它的作用,而 AIOps 将为企业带来最直接最深远的价值。

腾讯钟学丹:汽车产业将基于云端定义智能、体验和新商业模式

易车讯 日前,在中国汽车产业发展(泰达)国际论坛上,腾讯智慧出行副总裁钟学丹受邀发表以《车云一体,构筑云上新生产力》为主题的主旨演讲,分享了腾讯对汽车产业数字化变革、车云一体化发展的理解和实践。



腾讯智慧出行副总裁 钟学丹


钟学丹认为,中国市场正在引领智能化相关技术的发展和创新,从单车智能到车云一体持续进化。同时,汽车行业进入到不确定性与合规化发展并存时代,云作为弹性、易拓展的载体,可以帮助企业提升业务韧性,抵抗动荡,安全合规发展。


“云正在成为重要生产力,车云一体化的数据驱动将成为汽车产业的竞争关键。未来,汽车行业将基于云端去定义智能、定义体验、定义新的商业模式。”钟学丹表示。


腾讯将以云为核心,为汽车产业提供数据驱动的车云一体化基础设施,通过灵活的部署方式、云原生的开放体系,以及针对汽车行业特性的行业解决方案,助力车企构建围绕厂、店、人、车等不同场景,构建车云一体化的数据驱动闭环。



今年是腾讯布局汽车行业的第五年,数据显示,已经有100多家车企及出行科技公司使用了腾讯云服务,在汽车行业的用云量已超过25万核服务器、汽车行业的存储规模突破100PB。


以下为演讲实录


各位领导、各位嘉宾,媒体朋友们,


大家好!


今天,我想跟大家分享一下,腾讯对于汽车产业数字化变革、车云一体化发展的理解和实践。


今年上半年,汽车产业经历了短期的震荡,但并没有影响智能网联汽车长期向好的发展态势。我们看到几大核心的变化:


第一个核心变化,智能电动化正在推动汽车产业结构化的变革。中国市场正在引领智能化相关技术的发展和创新,从单车智能到车云一体持续进化。


今年一季度统计,L2级自动驾驶在我国乘用车市场的新车渗透率已经达到23.2%。同时,近期多款新车已经搭载了高算力计算平台、激光雷达等面向L3级以上的硬件配置,并且价格已下探至20-30万元区间。可以说,2022年或将成为中国准L3自动驾驶量产开端之年。


这背后也伴随着巨大的研发和运营投入。如何更高效、更低成本的进行数据管理、算法迭代和体验优化,成为摆在大家面前的一大课题。在这样的背景下,车云一体化、数据驱动的IT基础设施成为必然。


第二个核心变化,用户对于智能科技的付费意愿和要求在不断增长。如何拓展新的服务模式,创造新的商业增值空间,成为车企的新考验。


德勤的一项调查显示,有90%以上的中国消费者愿意为车联网服务付费。好的体验不再是堆砌配置,而是要求以用户为导向,以数据为驱动,通过云端能力不断升级迭代,为用户提供按需服务,这背后还有非常多的商业空间值得挖掘。


第三个核心变化,汽车行业进入到不确定性与合规化发展并存时代。


一方面,新冠疫情反复、国际局势动荡等不确定性因素频发,对供应链、销售端都造成了一定的挑战。


另一方面,相关法律法规、行业标准、监管体系密集出台,也正引导汽车产业向更标准、更安全和更有序地发展,对企业的数据合规、自主可控提出了更高的要求。


在这样的背景下,云可以作为一个弹性、易拓展的载体,帮助企业提升业务韧性,抵抗动荡,安全合规发展。


综上变化,我们可以看到,云正在成为重要生产力,车云一体化的数据驱动将成为汽车产业的竞争关键。


基于云端去定义智能、定义体验、定义新的商业模式


一方面,软件占比的大幅提升,也促进汽车研发体系的重新构建。整车制造研发体系和智能座舱、自动驾驶的研发运营体系是完全不同的系统架构,后者需要构建数据驱动的敏捷研发和运营架构,如何实现大规模、分布式的软件协同效率提升,结合实时感知、场景理解、算法迭代等持续优化运行效率,将是新的核心竞争力。


从用户角度,用户对智能化极致体验是不断刷新的。用户对汽车的体验要求,不再是买车的时候有什么功能特性,而是在用车的过程中,是否能够及时的获得新鲜的场景体验,最新的数字化内容,不断与时俱进的新交互和功能,以及越来越懂用户的使用体验和服务等。


具体而言,云端协同所带来的核心价值可以概括为三个点:不断优化的研发运营效率,不断革新的汽车服务体验,并随之带来企业业务韧性的不断增强。


优化研发效率


智能化、电动化的发展趋势下,对软件能力提出更高的要求。研发效率是决胜的重要关键因素之一。


自动驾驶、智能汽车技术更快速的进化,除了车端感知能力、算力平台、控制优化等因素之外,还有一个非常重要的因素,就是云端的数据管理平台和算法训练平台。


工程实践中,获得一个算法模型,大约70-80%的人工时间花费在数据处理上,约70-80%的机器时间用在模型训练上。由此可见,数据和计算,是驱动研发效能提升的两大关键。


海量的数据存储和访问,如何降低存储成本、提升访问效率?我们基于腾讯云业界领先的存储加速服务———GooseFS,相比传统存储的接入和访问模式,加速性能提高了10倍,可以很好的满足汽车自动驾驶场景对海量数据访问所遇到的瓶颈。


在算法开发方面,我们提供的一站式算法开发、训练框架——TI-One,可以帮助大量节约算法训练的成本。在模型训练环节,算法开发TCO(总体拥有成本)至少降低50%,进一步节约计算成本,提高训练效率。


针对研发体系繁杂、架构不统一的情况,腾讯还可提供多云管理、多云调度的平台,并提供DevOps、AIOps、低代码平台等一站式的开发基础设施,加速软件开发效率和灵活性。


同时,我们认为,更高效、低成本的上云,一定是“专云专用”、符合行业特定需求的行业云。为此,我们在上海设立了一个智能汽车云专区,从云专区的硬件选型,到云上组件都是高度结合智能汽车行业特殊需求进行配置和优化。在智能汽车云上,我们打造了完整的自动驾驶、仿真训练、高精地图、座舱等云上自动化工具链等,为车企带来开箱即用的专有化云端服务,让车企可以更专注于算法优化和体验改善。


革新汽车服务体验


通过基于云端的互联服务,我们还在帮助拓展汽车服务新模式,探索创新的服务增值空间。


出行是一个场景驱动服务的体验模式,及时感知场景的变化和需求,为用户提供恰当的服务选择,可以极大的提升用户驾乘体验,而服务的碎片化、本地化需要有一个好的云端框架可以更便捷的将互联网服务快捷上车,方便用户无需下载安装,就可以更即时地、按需地获取这些丰富的内容和服务。


当然,好用的服务不在于多,而在于精。如何更好的结合用户具体的用车场景,解决用户当下所需呢?通过腾讯新一代的场景引擎,可以将车端对场景的实时感知,与云端的AI和数据能力相结合,让用户更清楚地获知身处何地、周边有什么、我想要的服务在哪里。我们重点围绕诸如停车、充电、etc等用户普遍关注的用车场景,去打磨的智能场景化的能力,帮助提升车载服务的活跃度。现在,腾讯也开放了场景引擎和智能推荐体系,助力车企打造自主可控的云端场景引擎一体化平台。


在自动驾驶场景和高级别辅助驾驶场景下,我们推出新一代智能驾驶地图,通过云端实时连接和一体化的数据架构,我们首创性地实现了高精地图、ADAS地图、SD地图的数据同源“一张图”,可以针对人工驾驶、辅助驾驶和自动驾驶的不同驾驶模式自动切换地图形态,从车道级精度到路径级精度,多种比例尺无缝切换。这种车-图-云一体化的形态,可以助力解决目前行业内普遍存在的各种地图之间数据不匹配,智能驾驶系统人工接管频率高,地图更新频率难以统一等制约智能驾驶功能实际应用等问题。同时,通过多模态的交互方式,为用户提供更沉浸、更鲜活的导航探索体验。


通过极致体验的打造和持续运营,腾讯愿与车企共创订阅制的商业模式,基于腾讯用户运营的经验,结合车企构建的车辆和用户数据闭环,助力车企打造和培养用户不但愿意使用,也愿意为体验付费的商业模式。


增强业务韧性


车云一体化带来的第三个价值,是增强业务韧性。


汽车产业目前正在经历结构性的变化,也进入到强监管、安全合规发展的时代,对企业的安全建设、数字化的运营能力,实时地事故处理能力,提出了更高的要求。


随着联网车辆的不断增长,如何构建更健壮和弹性的网络架构体系,及时解决接入、数据处理、扩容、灾备等问题,都是需要面对的新挑战。


云具备更加弹性灵活、开放兼容、可持续运营的特性,可以成为汽车企业在提升业务韧性的过程中的常规标配,助力车企随时应对突发的业务,提升业务敏捷性,有效降低整体运营成本。


在这方面,我们基于云和数字化实践的经验,结合汽车行业的业务特点,可以借助云平台的数字底座,实现研发智能化、生产智能化、管理智能化、运营智能化,持续助力汽车产业增强业务韧性。


腾讯为汽车产业提供“车云一体化”的基础设施


在车云一体化的趋势下,腾讯将以云为核心,为汽车产业提供以数据驱动的车云一体化基础设施,通过灵活的部署方式、云原生的开放体系,以及针对汽车行业特性的业务解决方案,助力车企构建自己的数字化底座和完整的业务服务能力。


首先,腾讯基于自身敏捷的云原生体系,打造沉淀出坚实的底层云基础设施,通过灵活部署的IaaS,以及云原生、Devops、开放的云上工具平台,帮助车企和合作伙伴灵活、快速、低成本的构建起车云一体化的基础,支撑汽车行业数智创新和快速变革。


在底层智能汽车云作为核心底座的基础上,向上连接起汽车产业链研发-生产-销售-服务等核心场景,实现车云一体化的数据驱动、场景闭环。帮助车企在软件定义汽车时代,构建新生产力。


基于开放强大的智能汽车云平台,通过中间的IPaaS应用集成连接器、IDaaS账号连接器、微搭低代码应用连接器等,可快速支撑厂、店、人、车等多端的不同场景,通过端云一体化实现数据驱动的新场景,创造汽车行业新生产力。


为100家车企和出行科技公司提供云服务


今年是腾讯发力汽车赛道的第五年,目前,已经有100家车企及出行科技公司使用了腾讯云服务。


面向汽车行业,一方面,我们持续夯实云底座能力。目前,腾讯云在汽车行业的用云量达到25万核服务器、汽车行业的存储规模突破100PB,帮助车企增量超过70%。


同时,在腾讯云底座之上,我们还面向汽车行业各环节的特殊需求进行专有化定制开发,围绕智能汽车云、数字营销、办公一体化、工业制造等场景,联合600+生态合作伙伴,推出了130+个云上行业解决方案。


站在汽车产业结构升级的重大时期,腾讯坚持做好数字化助手角色,专注自身所长三个领域:第一,深耕云、图为核心的基础设施;第二,发挥好C2B连接价值;第三,共建开放生态。


从单车智能到车云一体,再到智慧交通、智慧城市,腾讯将充分发挥好以上三个维度的能力,将人、车、路、云都能够连成一张网,在云端实现人车路的实时计算,让交通运营管理体系之间信息畅通,让企业一体化管理和运营效率更高,让用户服务更及时、更极致。



易车App提供销量、热度、点评、降价、新能源、实测、安全、零整比、保有量等榜单数据。如需更多数据,请到易车App查看。

现在学是什么技术好?

1、人工智能,人工智能正在迅速改变工作环境,这对于寻找新事物的程序员来说是激动人心的时刻。AI专业人员的招聘增长在2019年至2020年之间增长了32%。AI是一个更广泛的概念,与旨在像人类一样智能地行为的机器有关,而机器学习则依赖于能够理解特定事物的设备。人工智能领域最重要的技能包括C++、AmazonWebServices(AWS)和Python。进入2021年,你还可以考虑学习新兴AI技能—AIOps。AIOps是用于IT运营的人工智能缩写。它是指通过分析和机器学习,以自动化和增强IT操作的多层技术平台。AIOps平台利用大数据,从各种IT运营工具和设备中收集各种数据,以便实时自动发现并响应问题。2、机器学习,机器学习是进入未来的最具创新性和令人兴奋的领域之一,使其成为你可以学习的最有利可图的技能之一。从Siri和Alexa到聊天机器人,再到预测分析、无人驾驶汽车,这项技术在未来都有大量用途。机器学习的常见用例包括推荐系统、生成客户见解和情报以及检测欺诈。机器学习还可以应用于每个行业,包括医疗保健、教育、金融等。3、数据科学与分析,大数据中两个很重要的技术工作,包括数据科学和数据分析。在大数据上,投入最大的行业是银行、制造业、专业服务(例如:财务顾问、会计师事务所)和政府。数据分析是入门级技能,而数据科学则更先进。需要数据专业人员的行业涉及教育、财务、健康、软件等。4、数据工程,数据工程与数据科学是分开的,但前者使后者得以存在。数据工程师建立了数据科学家用来进行自己工作的基础架构和工具。5、数据可视化,数据可视化是通过将数据置于可视环境中,来帮助人们理解数据重要性的一种方法。例如,通过将电子表格或报告转换为易于理解的图表/项目。数据科学家和数据分析师通常使用此技能,但在数字营销的岗位中也可能会对其有所帮助。数据可视化可以帮助预测销量,了解哪些因素会影响消费者行为,确定企业可以改进的领域。 关于aiops用于汽车行业和ai在汽车领域的应用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 aiops用于汽车行业的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于ai在汽车领域的应用、aiops用于汽车行业的信息别忘了在本站进行查找喔。
上一篇:人工智能并不会取代人类 不必对人工智能过分恐惧
下一篇:智能运维平台花园建设(智能花园控制系统)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~