实时警报通知:微信告警通知的重要性解析
906
2023-01-16
智能门禁报警系统的仿真应用
智能门禁报警系统的仿真应用
引言
本文研究了结合ID技术和人脸识别技术的门禁与报警系统。结合ID技术可以使检索信息直接链接到人脸库中对应的人脸图像类别;人脸图像分块后直接采用奇异值分解方法压缩图像,两者的应用大大提高了门禁安防报警系统的传输和存储效率。人脸识别技术的应用,更加提高了门禁安防报警系统的安全可靠性。
智能门禁安防报警系统结构
智能门禁报警系统如图1所示,主要包括以下几个部分。
文件模块
文件模块操作按钮链接有基于整幅图像的人脸识别和基于子图像的人脸识别方法的选择。
子图像所对应人脸的不同特征在识别过程中所起的作用是不相同的,基于面部骨骼特征、眼睛的分布、鼻子的形状等结构特征,往往是鉴别人脸的主要依据。基于整幅人脸图像的向量求取特征空间时,则计算量非常大,当样本空间很大或者人脸图像像素较大时,对识别速度会有很大影响。进行加权特征处理,则使人脸识别问题得到了很好的解决。
在进行人脸图像识别方法的对比分析时,通过人脸图像识别系统的文件操作按钮,可选择基于整幅人脸图像的识别方法或者基于子图像的识别方法进行人脸识别。选择基于子图像的识别方法之后,进一步设定子图像的数目、子图像的权值等参数。
图像预处理模块
研究发现人脸的不同特征在识别过程中所起的作用是不相同的,基于面部骨骼特征、眼睛的分布、鼻子的形状等结构特征,往往是鉴别人脸的主要依据。
人脸特征提取模块
在训练或测试时,通过模块中功能设置的选取,设定链接进行人脸子图像的特征提取。
利用训练学习过程获得的人脸图像数据库中的整幅图像或子图像特征空间的数据,与测试人脸图像之间进行计算获得图像差。
人脸数据库模块
人脸数据库模块的两个选项分别链接着人脸图像库中整幅人脸图像特征空间和子图像特征空间的数据,供测试时与待测人脸图像对应的特征空间进行对比识别。
将YALE人脸图像库中选定的图像进行训练后,得到人脸图像矩阵、整幅人脸图像的特征脸空间、子图像的特征脸空间等数据,存储在人脸数据库中,以备实时调用。加入新的人脸图像的类别样本时,需要重新针对所有样本图像进行训练,更新人脸数据库。
人脸图像识别模块
人脸图像识别模块链接着基于贝叶斯估计的分类识别方法、基于RBF网络和贝叶斯分类器融合的人脸识别方法两个选项。
贝叶斯估计识别模块
人脸图像分块后应用奇异值分解方法进行数据压缩,对每个特征分块设计一个贝叶斯分类器,最后将这些分类器融合(如图3所示)。
本文采取加权求和的方法:
其中,S(Ii,Ij)表示两幅图像Ii与Ij的相似度,L是贝叶斯分类器(FBBC)的总数,是Ii与Ij的第b个特征块之间的差值。是由第b个贝叶斯分类器计算出的类条件概率密度。wb是第b个贝叶斯分类器对应的权值。
RBF神经网络为三层结构(如图4所示)。
训练时:输入层的维数r与子图像的数目对应;隐含层选用高斯核函数:
识别结果模块
利用贝叶斯分类器估计测试样本与训练样本之间的人脸图像相似度,满足阈值初始化设定值的人脸图像和相关类别情况的文字说明显示于相应界面内。满足阈值要求的人脸图像可以按照50%的比例输出,也可以按照其他的比例输出。
仿真实验结果及分析
利用在Yale人脸库中的人脸图像,分以下4种分块加权的情况进行实验(识别结果见表1和表2)。
1、b1=b3=4;b5=2;b8=2;b2=b4=b6=b7=b9=1,权值分配情况如图5所示。
如图6所示,满足阈值要求的人脸图像输出情况和必要的文字说明,图中选择的人脸图像输出比例选择为50%;也可以选择其他的人脸图像输出比例。
3、b1=b3=4;b5=2;b8=0;b2=b4=b6=b7=b9=1
4、b1=b3=4;b5=3;b8=0;b2=b4=b6=b7=b9=1
仿真实验结果表明,通过子图像权值的分配,突出人脸骨骼特征,识别效果良好(见表1和表2),模拟了人类识别人脸时主要依据人脸骨骼等稳定特征,而对嘴部和皮肤折皱等表情变化部分特征给予弱化或剔除这一特点。通过对人脸图像进行分块,降低图像维度,减小了计算量。
结语
本文研究了在智能门禁报警系统中,人脸识别结合ID技术的仿真应用问题,验证了基于RBF网络和贝叶斯估计人脸识别方法在提高安防报警系统的快速、准确和安全性方面的有效性,提高了门禁系统的安全性和防欺诈性,与ID技术相结合,实现了快速识别。将分块后对人脸图像奇异值分解压缩,提高传输效率,节省存储空间,改善局域网的应用环境。在本文所研究的算法基础上,使用MATLAB语言开发了人脸图像仿真识别系统的管理操作界面,基于Yale标准人脸图像库,用户可以非常方便地对人脸图像仿真识别系统进行操作使用,对所研究的人脸识别方法进行仿真测试与对比分析,系统运行结果非常直观地显示出来。
发表评论
暂时没有评论,来抢沙发吧~