钻井液性能测试的原理(钻井液性能测试实验原理)

来源网友投稿 766 2023-01-16

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈钻井液性能测试的原理,以及钻井液性能测试实验原理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享钻井液性能测试的原理的知识,其中也会对钻井液性能测试实验原理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

钻井液主要参数和测定


功用:冷却和润滑钻头钻具,携带和悬浮钻屑,泥浆录井时反应地层信息,稳定井壁,平衡地层压力,传递水动力以提高钻进速度和破岩效率等

钻井液类型:1.
按密度:非加重和加重钻井液
2.
按与粘土水化性能强弱:非抑制性和抑制性钻井液
3.
按固相含量:地固相和无固相钻井液
4.
按流体介质:水基,油基和气体型三类
近期出现了合成基钻井液。
目前国内得到认可的各种钻井液类型为:
1.分散钻井液
2.钙处理钻井液
3.盐水钻井液
4.饱和盐水钻井液
5.聚合物钻井液
6.钾基聚合物钻井液
7.油基钻井液
8.合成基钻井液
9.气体型钻井流体
10.保护油气层的钻井液

主要参数:
密度
流变性
滤失造壁性
润滑性
钻井液的ph和碱度
钻井液的含沙量
钻井液的固相含量
钻井液中膨润土含量钻井液中滤液分析
前几项参数分常规和高温高压两种不同条件
同时前几项的重要性也最大,一般测得就是前几项

松软煤层钻进用可降解钻井液的试验研究

蔡记华1 谷穗2 乌效鸣1 刘浩1 陈宇1

基金项目:国家自然科学基金项目(40802031、41072111)。

作者简介:蔡记华,1978年生,男,湖北浠水人,博士、副教授,从事钻井液与储层保护方面的教学和研究工作,电话:027-67883142,E-mail:catchercai@126.com。

(1.中国地质大学(武汉)工程学院 湖北武汉 4300742.中国地质大学武汉江城学院 湖北武汉 430200)

摘要:松软煤层中的钻进护孔技术是目前煤矿瓦斯抽采利用中亟待解决的技术难题之一。论文首先在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对其性能进行了综合研究。结果表明:可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间)。研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

关键词:松软煤层 瓦斯抽采 可降解钻井液 护孔 储层保护

Experimental Research on Degradable Drilling Fluid for Drilling in Unconsolidated and Soft Coal Seam

CAI Jihua1, GU Sui2, WU Xiaoming1, LIU Hao1, CHEN Yu1

(1.Engineering Faculty, China University of Geosciences, Wuhan 430074, China;2.Jiangcheng College, China University of Geosciences, Wuhan 430200, China)

Abstract: Technologies needed to stabilize the wellbore are among the most urgent problems that require be- ing resolved in the drainage and exploitation of coalmine methane (CMM) from unconsolidated and soft coal seams.In the first, the paper theoretically analyzed the borehole maintaining and biodegradation mechanisms of degradable drilling fluid.Then systematical study on its performance were carried out by utilizing rheology tests, mud cake remove tests and coal rock gas permeability tests.Results show that the degradation properties of degrad- able drilling fluid were controllable and it was fit for the coalmine operation environment.Furthermore, complex unplugging technologies employing enzymatic degradation plus acidification by HCl was effective in removing the damage caused by mud cakes of degradable drilling fluid and resuming the gas permeability of coal rock or even en- hance it by a ratio between 15.47% and 38.92%.Technological achievements of this paper can help to resolve the contradiction between borehole maintaining and reservoir protection, and also offer powerful theoretical and techni- cal foundation for drilling technology optimization and production capacity enhancement in vertical, horizontal and multi-lateral drilling for coalbed methane exploration.

Keywords: unconsolidated and soft coal sea; coalmine methane drainage and exploitation; degradable drill-ing fluid; borehole maintain; reservoir protection.

1 可降解钻井液的提出

根据抽采对象的不同,可将煤矿瓦斯抽采分为本煤层瓦斯抽采、邻近层瓦斯抽采和采空区瓦斯抽采[1]。由于我国地质构造条件复杂,成煤时代多,煤矿区分布广,煤储层特征差异大。简单起见,可划分为正常煤体结构的硬煤层和构造发育的松软煤层两种典型类型。对于松软煤层,由于煤与瓦斯突出、煤层松软、机械强度低等原因,采用清水或空气等常规排粉钻进方式时易出现塌孔、卡钻或喷孔等问题,打钻成孔困难,瓦斯抽采效率低。松软煤层的煤层气开发是我国煤层气产业化面临的最严峻的挑战之一[2~4],在此类煤层中钻进护孔技术是目前亟待解决的技术难题之一[5~6]。

为达到较好的护孔效果,通常在钻井液中添加纤维素、胍尔胶和生物聚合物等聚合物。纤维素和胍尔胶等起到增粘、降低摩阻和润滑作用以保持井壁稳定,而生物聚合物可以增强钻井液在水平井段内的岩屑悬浮能力。尽管这类钻井液对储层的伤害比传统泥浆要小,但还是会在井壁上形成了低渗透的滤饼。滤饼的不充分降解会极大地影响井壁的流动能力,结果是显著降低生产井的产量。因此,特别是在松散地层和高渗透性地层中,必须清除渗滤到地层中的钻井液以及沉积在井壁上的滤饼,以实现产量最大化。

近年来,针对松散地(储)层钻进中护孔和储层保护的矛盾,我们提出了一种环境友好的可降解钻井液的研究思路[7~11]:在钻进时能保持孔壁稳定,而在钻进工作结束后,钻井液能在生物酶和无机酸作用下实现降解、粘度下降,先前形成的滤饼破除、产层流体的流动性增强、恢复地下流体资源解吸扩散通道,达到提高地下流体资源产量效果的目的。

本文在上述研究基础上,在理论上分析了松散煤层钻进用可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对可降解钻井液的性能进行了综合研究。

2 可降解钻井液的作用机理

2.1 可降解钻井液的护孔作用机理

可降解钻井液主剂由粘土稳定剂(如KCl)、水溶型或酸溶型架桥粒子/加重剂(一般为细粒CaCO3或无机盐)、降滤失剂(主要是天然植物胶如淀粉或纤维素或胍尔胶)、流型调节剂(如生物聚合物XC)等组成,这些处理剂共同起到增粘和降低摩阻作用;当钻进结束后,加入能降解各种聚合物的生物酶破胶剂[12~15]和能溶解细粒CaCO3无机酸(通常是15%的HCl[12,14])或有机酸[13,16]来清除聚合物滤饼(主要由聚合物和CaCO3组成)对储层渗透性的伤害。下面分别阐述各种处理剂的作用机理。

(1)粘土稳定剂可以用来抑制煤岩中粘土矿物遇水后膨胀;

(2)水溶型或酸溶型架桥粒子可以在煤岩表面的孔隙或裂隙孔喉处形成架桥,起到防止钻孔漏失的目的,同时CaCO3或无机盐也可以适当增加钻井液的密度,起到平衡地层压力的作用;

(3)天然植物胶大分子物质相互桥接,滤余后附在孔壁上形成隔膜。这些隔膜薄而坚韧,渗透性极低,可以阻碍自由水继续向煤层渗漏(图1)。同时,这类聚合物钻井液具有良好的包被抑制性,能有效地抑制钻屑分散。另外,这类具有强亲水基团的长链环式高分子化合物易溶于水,形成的水溶液具有较高粘度,可以增强钻孔孔壁表面松散煤粒之间的胶结力,起到加固松软煤层孔壁的效果;

图1 Na-CMC在粘土颗粒上的吸附方式

(4)生物聚合物XC是一种优良的流型调节剂,用它处理的钻井液在高剪切速率下的极限粘度很低,有利于提高机械钻速;而在环形空间的低剪切速率下又具有较高的粘度,并有利于形成平板形层流,可增强钻井液在近水平煤层钻孔中的携岩效果。

2.2 可降解钻井液的生物降解作用机理

所谓降解,是指在物理因素、化学因素或生物因素等的作用下聚合物分子量降低的过程。从实用的角度出发,聚合物降解可分为热降解、机械降解、光化学降解、辐射化学降解、生物降解及化学降解等不同的引发方式[17]。下面以胍尔胶为例,阐述生物酶降解聚合物的作用机理。

胍尔胶属于半乳甘露聚糖类,所用胍尔胶分子主链由β-1,4糖甙键将D-甘露糖单元连接而成,D-半乳糖取代基通过α-1,6糖甙键接在甘露糖主链上,沿甘露糖主链随机分布,半乳糖与甘露糖单元之比约为1:1.6。半乳甘露聚糖特异复合酶可有效地水解半乳甘露聚糖,它由两种O键水解酶组合而成,两种酶的降解机理如图2所示。

第一种O键水解酶是α-半乳糖甙酶(蜜二糖酶),专门作用于半乳糖取代基,可用来水解末端的非还原性α-D-半乳糖甙键。第二种O键水解酶过去常用来分解胍尔胶分子,在此专门作用于甘露糖主链,这种水解酶被称作β-1,4甘露聚糖环内水解酶,可随机水解β-1,4-D-甘露糖甙键[18]。

后续室内实验采用的酶制剂是几种生物酶的复配物。特种酶1号(SE-1)以纤维素甙键特异酶和半乳甘露聚糖特异复合酶为主,特种酶2号(SE-2)和特种酶4号(SE-4)以半乳甘露聚糖特异复合酶为主。

图2 胍尔胶糖甙键特异酶的降解机理

图3 胍尔胶钻井液的降粘曲线

3 可降解钻井液的室内试验

3.1 降粘效果评价

在理论分析基础上,进行了生物酶降解聚合物的室内实验,以钻井液流变参数为主要评价指标,用几种特种酶来降解单一聚合物或复配聚合物。将生物酶分别加入单一聚合物和复合聚合物中,研究生物酶对这些可降解钻井液的降粘效果,将表观粘度(AV)、塑性粘度(PV)和动切力(YP)随时间的变化关系绘制成曲线如图3~图5所示。

3.1.1 单一聚合物钻井液

从图3可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.5%的胍尔胶钻井液的表观粘度从23.5mPa·s降低到5mPa·s。塑性粘度和动切力也呈现出类似的变化规律。

由图4可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.75%的羧甲基纤维素钻井液的表观粘度从20.5mPa·s降低到6mPa·s。

由于特种生物酶SE-1同时含有纤维素甙键特异酶和半乳甘露聚糖特异复合酶,它对胍尔胶和羧甲基纤维素均有较好的降解效果。

3.1.2 复配聚合物

从图5可以看出,在特种酶SE-2的作用下,在46h之内,由质量浓度为0.3%羧甲基纤维素和0.2%胍尔胶组成的复合聚合物钻井液的表观粘度从25.5mPa·s降低到5mPa·s。随着时间的变化,塑性粘度和动切力也按类似的规律下降。

由图3~图5可以看出,在生物酶作用下,聚合物能实现有效的降解,聚合物大分子逐渐断链变成小分子,钻井液粘度降低,在煤储层中的流动性增强,从而恢复煤层气解吸释放的通道。

图4 羧甲基纤维素钻井液的降粘曲线

图5 复配聚合物钻井液的降粘曲线

3.2 滤饼清除实验

实验目的是通过观察可降解钻井液滤饼在生物酶破胶剂(和无机酸)的作用下滤饼表面的变化情况、考察滤饼的解堵效果(结果分别如图6~图7所示)。可降解钻井液的配方如下:

配方1:400ml水+2.6gCMC+4gDFD+4.8gCaCO3+NH4HCl(调节pH),先后采用0.00625%的SE-4溶液和5%HCl浸泡滤饼。

配方2:400ml水+1.6gCMC+8g膨润土,采用0.04%JBR溶液浸泡滤饼。

配方1的滤饼清除实验结果如图6所示,可以看出:单独使用生物酶SE-4只能清除该套体系中的CMC(图6-b),而对CaCO3等影响不大。当用5%HCl浸泡2h后,滤饼变得非常薄,说明CaCO3已与HCl充分反应[1]。

图6 滤饼的外观变化图

按照配方2所配制钻井液的滤饼清除实验结果如图7所示。由于这种配方中只有CMC这种聚合物,在用JBR溶液浸泡5h后,可降解钻井液的滤饼已基本降解完全。

图7 JBR作用下可降解钻井液(配方4)滤饼清除情况

3.3 煤岩气体渗透率测试

煤矿井下瓦斯抽放的最终目的就是恢复煤层的渗透率,获得较高的瓦斯抽放量。因此,渗透性的恢复对于可降解钻井液而言是一个更加直接的衡量指标。采用JHGP智能气体渗透率和JHLS智能岩心流动实验仪对可降解钻井液进行渗透性恢复实验,实验步骤详见参考文献[11]。

煤岩气体渗透率测试结果(表1)表明:晋-3煤样经过“污染—生物酶降解—酸化”三个阶段,其渗透率表现出“下降—上升—上升”的趋势,而且经过生物酶降解和酸化(也包括之前的加热处理)之后,煤岩的气体渗透率甚至超过了污染前的气体渗透率(如图8所示,推测盐酸亦与煤岩中的方解石和白云石发生反应,增大了煤岩孔隙裂隙),这也证实了“生物酶降解—酸化处理”的综合解堵工艺是有效的,有利于提高煤层气藏的采收率。

表1 煤岩气体渗透率

注:(1)下游压力(出口压力)为0.1MPa(即1个大气压);(2)△K=(K4-K1)*100/K1。

图8 不同处理阶段煤岩平均气体渗透率变化情况

4 结论

论文在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性评价、滤饼清除实验和煤岩气体渗透率测试等实验手段对可降解钻井液进行了综合研究,主要得出以下结论:

(1)可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;

(2)生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间);

(3)研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

参考文献

[1]王兆丰,刘军.2005.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,36(3),29~33

[2]苏现波,王丽萍.2001.中国煤层气产业化的机遇、挑战与对策[C].瓦斯地质新进展,222

[3]饶孟余,杨陆武,冯三利等.2005.中国煤层气产业化开发的技术选择[J].特种油气藏,12(4),2

[4]袁亮.2007.淮南矿区煤矿先抽后采的瓦斯治本技术[J].中国煤炭.33(5),5~7

[5]张群.2007.关于我国煤矿区煤层气开发的战略思考[J].中国煤炭,33(11),9~11

[6]国家发展和改革委员会.2005.煤层气(煤矿瓦斯)开发利用“十一五”规划[R]

[7]蔡记华,乌效鸣,潘献义等.2004.暂堵型钻井液的试验研究.地质科技情报[J],23(3):97~100

[8]蔡记华,乌效鸣,刘世锋.2004.自动降解钻井液在水井钻进中的应用[J].煤田地质与勘探,32(5):52~54

[9] Jihua Cai, Xiaoming Wu, Sui Gu.2009.Research on environmentally safe temporarily plugging drilling fluid in water well drilling [C] .SPE 122437

[10] 蔡记华, 乌效鸣, 谷穗等.2010. 煤层气水平井可生物降解钻井液流变性研究 [J] . 西南石油大学学报(自然科学版), 32 (5): 126~130

[11] 蔡记华,刘浩, 陈宇等.煤层气水平井可降解钻井液体系研究 [J] .煤炭学报, 已录用

[12] Beall, Brian B., Tjon-Joe-Pin, Robert, Brannon, et al.1997.Field experience validates effectiveness of drill-in fluid cleanup system [C] .SPE 38570

[13] Frederick O.Stanley, Phil Rae, Juan C.Troncoso.1999.Single step enzyme treatment enhances production capacity on horizontal wells [C] .SPE 52818

[14] K.P.O' Driscoll, N.M.Amin, I.Y.Tantawi.2000.New treatment for removal of mud-polymer damage in multilateral wells drilled using starch-based fluids [J] .SPE Drilling Completion, 15 (3): 167~176

[15] Hylke Simonides, Gerhard Schuringa, Ali Ghalambor.2002.Role of starch in designing non-damaging completion and drilling fluids [C] .SPE 73768

[16] R. C.Burton, R. M.Hodge, Ian Wattie, Jane Tomkinson. 2000.Field test of a novel drill-in fluid clean-up technique[C] .SPE 58740

[17] [德] W.施纳贝尔.1998.聚合物降解原理及应用 [M] .科学出版社, 180~187

[18]李明志,刘新全,汤志胜等.2002.聚合物降解产物伤害与糖甙键特异酶破胶技术 [J].油田化学, 19(1), 89~92

钻井液密度调整的原理

充气钻井液是以气体为分散相,钻井液为连续相钻井液性能测试的原理的气液均匀混合体系,类似于气举井钻井液性能测试的原理的情况,将气体(空气、氮气等)在一定的压力下注入水或钻井液当中,有效的降低井眼内的静液柱压力,调整充气比可将密度调至0.70g/cm3左右,气体体积占总体积数低于55%。

钻井液性能与钻井工作的关系

钻井液性能指标与钻井工作的关系,钻井液密度与钻井的关系,密度过大有以下害处:
1、损害油气层;
2、降低钻井速度;
3、过大压差造成压差卡钻;
4、易憋漏地层;
5、易引起过高的粘切;
6、多消耗钻井液材料及动力;
7、抗污染能力下降。
密度过低则容易发生井喷、井塌(尤其是负压钻井)、缩径(对塑性地层,如较纯的
粘土、盐岩层等)及携屑能力下降等。
钻井液粘度、切力与钻井的关系
1、粘度、切力过大有以下害处。
⑴流动阻力大,能量消耗多,功率低,钻速慢;
⑵净化不良(固控设备不易充分发挥效力),易引起井下复杂情况;
⑶易泥包钻头,压力波动大,易引起卡、喷、漏和井塌等事故;
⑷脱气较难,影响气测并易造成气侵。
2、粘度和切力过低也不利于钻井,如:
⑴洗井不良,井眼净化效果差;
⑵冲刷井壁加剧,引起井塌等井下事故;
⑶岩屑过细影响录井。
滤失量和泥饼质量与钻井工作的关系
钻井液滤失量过大,泥饼厚而虚,会引起一系列问题。
1、易造成地层孔隙堵塞而损害油气层,滤液大量进入油气层,会引起油气层的渗透
率等物性变化,损害油气层,降低产能。
2、泥饼在井壁堆积太厚,环空间隙变小,泵压升高。
3、易引起泥包钻头,下钻遇阻、遇卡或堵死水眼。
4、在高渗透地层易造成较厚的滤饼而引起阻卡,甚至发生压差卡钻。
5、电测不顺利,并且由于钻井液滤液进入地层较深,水侵半径增大,若超过测井仪器所测及的范围,其结果是电测解释不准确而易漏掉油气层。
6、对松软地层,易泡垮易塌地层,会形成不规则的井眼,引起井漏等。•泥饼一定要薄、致密、韧性好,能经受钻井液液流的冲刷。•固相含量与钻井的关系
钻井液中固相含量越低越好,一般控制在0.5%以下。固相含量过大,有以下危害:• 1、固相含量高,钻井液柱压力大,钻速降低。
2、固相颗粒愈细对钻速影响愈大,而且深入油层会造成永久性堵塞,油气层受损害严重。3、固相含量高、滤失量大时,泥饼必然厚,摩阻系数增大,因而易引起井下复杂情况的发生。
4、固相含量高,钻井液的流变性难以控制,且流阻大,功耗多,钻井效率低。
5、含砂量大,易造成钻头、钻具等机械设备的磨损。
6、在固相含量高时,钻井液受外界影响大且敏感(如对温度、各种污染物等的影响
变大)。
降低固相含量的方法
1、机械除砂:利用振动筛、除砂器、除泥器等设备降低固相含量。
1)、振动筛
振动筛是对钻井液进行固相控制的第一级设备,又是唯一能适用于加重钻井液的常
规分离设备。因此,它是固控的关键设备,担负着清除大量钻屑的任务,同时为下
一级固控设备的使用创造必要的条件,如果振动筛发生故障,其下一级设备就会超载,严重影响净化效果。所以,要根据钻井条件,选好、用好振动筛•
离心机主要用在加重钻井液中回收重晶石和清除细小固相及胶体,在非加重钻井液中清除钻屑,也可用离心机对旋流器排出的底流进行第二次分离,回收液相,排除钻屑。•
离心机的处理量和分离粒度与其转速和容量有关。
化学除砂:加入化学絮凝剂,将细小的砂子变大而沉降。
3、降低钻井液粘度有利于降低固相含量:因此在现场维护钻井液时,对固相含量有下列要求。
⑴根据需要配备良好的净化设备,彻底清除无用固相。
⑵必须严格控制膨润土的含量,所使用钻井液的密度愈高、井愈深、温度愈高,膨润土的含量应愈低,一般应控制在30~80kg/m3。
⑶在轻钻井液中,固相含量应不超过10%(体积)或密度不大于1.15g/Cm3。⑷无用固相含量与膨润土含量的比值,应控制在2﹕1~3﹕1。
PH值与钻井工作的影响
1、PH值过高,OH-在粘土表面吸附,会促进泥页岩的水化膨胀和分散,高PH值的钻井液具有强腐蚀性,缩短了钻具及设备的使用寿命。
2、通过PH值的变化,可以预测井下情况。如盐水侵、石膏侵、水泥侵等都会引起
PH值的变化。 关于钻井液性能测试的原理和钻井液性能测试实验原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 钻井液性能测试的原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于钻井液性能测试实验原理、钻井液性能测试的原理的信息别忘了在本站进行查找喔。
上一篇:智能家居绿色生活 享受智能生活
下一篇:Aiops招聘(AI技术员招聘)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~