智能运维平台配置需求分析(运维配置中心)

来源网友投稿 718 2023-01-16

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈智能运维平台配置需求分析,以及运维配置中心对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享智能运维平台配置需求分析的知识,其中也会对运维配置中心进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

智能运维管理平台是如何进行运维管理的?

IT运维从传统走向智慧,首先要经历数字化运维阶段,搭建数字运维中台既是实现运维数据有效治理的前提和基础,也是推进运维数智化转型的第一步。针对上述需求,擎创科技自主研发的擎创夏洛克AIOps智慧运营平台(如下图所示)可通过数字运维中台,对运维数据进行统一的采集存储和管理,即便面对高达100TB的日增数据量,也可进行秒级实时分析,为异常检测、根因定位等场景奠定坚实基础。


擎创夏洛克AIOps智慧运营平台架构


与传统运维方式相比,智能化运维最突出的优势是“数据大集中”,即基于数字运维中台建设,通过统一监控中心来集中管理和分析所有运维数据,并以业务视角观测运维数据的相关性,最终建立智能化场景来解决实际问题。擎创自主研发的智能运维产品——夏洛克AIOps智慧运营平台,刚好为此量身定制。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。


擎创夏洛克AIOps智慧运营平台架构


目前,夏洛克AIOps已在政府机关组织、银行业、证券保险业和交通运输业等行业场景中应用落地,极大节省了企业客户的人力成本和资金成本,提升了运维的有效性和质量。例如,通过为客户构建智能运维平台,轻松应对日增80TB的数据量,让客户平均故障修复时间(MTTR)缩短150%以上,运维总体拥有成本(TCO)下降80%以上。

智能运维服务都有哪些功能以及效果呢?

智能运维是一种全新的数字化运维能力,且是企业数字化转型的必备能力。智能运维的本质是提升运维数据的认知能力,它在提升运维数据治理能力、优化企业业务数字化风险、降低运维人力成本和提升运维在业务侧的影响力方面都有本质的提升。

智能运维,又称AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。

比如以我们公司的夏洛克AIOps智慧运营平台为例。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,尽早布局才能在数字化时代不会被淘汰。

智能运维适合哪些场景?都涉及哪些领%

智能运维,基本上有IT运维需求的领域都涉及。但目前还在起步发展阶段,国内应用比较多的主要是金融业(银行证券保险)、能源、物流、政务及智能制造业。相信在不久的将来,智能运维将会替代传统运维,成为行业标配。

智能运维通常需要统一管理监控、日志等运维数据,并对它进行智能化分析。主要场景包含告警收敛、异常检测、多指标根因定位、多维分析、全链路监控、同源分析、容量预测、健康分析、系统画像、业务全景运营视图等。

智能运维平台系统是什么

智能运维平台,又称AIOps,是将AI赋能于IT传统运维,通过对日志、指标、Trace等数据的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。

一套完整的智能运维平台系统,通常包括:

(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。

(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案

(3)告警辨析中心:智能化集中告警,构建闭环告警管理

(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析

(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测

(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景

智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次

智能运维适合哪些场景?都涉及那些领域?

IT的智能运维AIOps,目前在国内落地比较多的是对IT故障容忍率更低的行业,比如金融、交通、互联网等等。各厂商主要的差异在于数据治理的能力和经验(当数据量越来越大时,一个好的运维数据中台可以保证运行性能)、产品线的覆盖度(告警、日志、指标等均可进行智能分析)、智能场景的丰富度。
对于智能运维来说,常见的智能场景有异常检测、根因定位、自动排障、容量预测、告警收敛、日志聚类等。随着应用的进一步广泛,智能场景也会不断更新、越来越多。
可以说智能运维的发展完全是顺应时代的需求,互联网逐渐与衣食住行变得息息相关,由生活衍生出来的金融、交通、通讯、能源等行业企业同互联网一起经历了多样化的变迁升级。因此,与互联网伴生而来的是对生产数据的运维管理,经历了手工、自动化的阶段后,在人工智能的推动下,运维逐渐向智能化(AIOps)进化。 关于智能运维平台配置需求分析和运维配置中心的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能运维平台配置需求分析的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于运维配置中心、智能运维平台配置需求分析的信息别忘了在本站进行查找喔。
上一篇:钻井液性能测试公司(钻井液的常规性能测试)
下一篇:智能监控告警管理制度内容(智能监控告警管理制度内容有哪些)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~