钻井液性能测试实验报告(钻井液性能测试实验报告)

来源网友投稿 1437 2023-01-15

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈钻井液性能测试实验报告,以及钻井液性能测试实验报告对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享钻井液性能测试实验报告的知识,其中也会对钻井液性能测试实验报告进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

钙离子对水基钻井液性能有何影响?如何设计相关实验?

钙离子对水基钻井液性能影响是:使钻井液体系中分散钻井液性能测试实验报告的郭土粒子处于絮凝状态钻井液性能测试实验报告,控制页岩珊塌和井简扩大钻井液性能测试实验报告,防止地层损害。实验做法是:
1、所需仪器、用品:仪器znn-d6粘度计一台,电子天平一台。药品cmc,降粘剂。
2、步骤:取原浆500毫升,高速搅拌5分钟,测试性能。
3、分成5组,按照0.05、0.15、0.2、0.25、0.3,加入生石灰,高速搅拌10分钟后,测全套性能。
4、根据加入生石灰钻井液性能测试实验报告的钻井液性能,加入0.1、0.1、0.2、0.2、0.3的稀释剂,使其性能恢复。
5、将所得数据整理记录。

钻井液性能测试方面? 详细的!

按API规定常检测钻井液性能测试实验报告的钻井液性能包括钻井液性能测试实验报告:密度、漏斗粘度、塑性粘度、动切力、静切力、API滤失量、HTHP滤失量、Ph值、碱度、含沙量、固相含量、膨润土含量、和滤液中各种离子浓度等。一、 钻井液密度
钻井液的密度是指单位体积钻井液的质量,常用g/cm3
二、 钻井液的流变性
钻井液的流变性是指钻井液流动和变形的特性。参数:塑性粘度、动切力、漏斗粘度、表观粘度和静切力等钻井液的重要的流变参数。
三、 钻井液的造壁性
在钻井过程中,当钻头钻过渗透性地层时,由于钻井液的液柱压力一般总是大于地层孔隙压力,在压差作用下,钻井液的液体便会渗入地层,这种特性常称为钻井液的滤失性。在液体发生层滤的同时,钻井液中的固相颗粒会附着并沉积在井壁上形成一层泥饼。
四、 钻井液的PH值
用钻井液的PH值表示钻井液滤液的酸碱性。
五、 钻井液的含沙量
钻井液的含沙量是指钻井液中不能通过200目筛网,及粒径大于74μm的沙粒占钻井液总体积的百分数。
六、 钻井液的固相含量
钻井液的固相含量通常用钻井液中全部固相的体积占钻井液总体积的百分数来表示。

松软煤层钻进用可降解钻井液的试验研究

蔡记华1 谷穗2 乌效鸣1 刘浩1 陈宇1

基金项目:国家自然科学基金项目(40802031、41072111)。

作者简介:蔡记华,1978年生,男,湖北浠水人,博士、副教授,从事钻井液与储层保护方面钻井液性能测试实验报告的教学和研究工作,电话:027-67883142,E-mail:catchercai@126.com。

(1.中国地质大学(武汉)工程学院 湖北武汉 4300742.中国地质大学武汉江城学院 湖北武汉 430200)

摘要:松软煤层中的钻进护孔技术是目前煤矿瓦斯抽采利用中亟待解决的技术难题之一。论文首先在理论上分析钻井液性能测试实验报告了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对其性能进行了综合研究。结果表明:可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间)。研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

关键词:松软煤层 瓦斯抽采 可降解钻井液 护孔 储层保护

Experimental Research on Degradable Drilling Fluid for Drilling in Unconsolidated and Soft Coal Seam

CAI Jihua1, GU Sui2, WU Xiaoming1, LIU Hao1, CHEN Yu1

(1.Engineering Faculty, China University of Geosciences, Wuhan 430074, China;2.Jiangcheng College, China University of Geosciences, Wuhan 430200, China)

Abstract: Technologies needed to stabilize the wellbore are among the most urgent problems that require be- ing resolved in the drainage and exploitation of coalmine methane (CMM) from unconsolidated and soft coal seams.In the first, the paper theoretically analyzed the borehole maintaining and biodegradation mechanisms of degradable drilling fluid.Then systematical study on its performance were carried out by utilizing rheology tests, mud cake remove tests and coal rock gas permeability tests.Results show that the degradation properties of degrad- able drilling fluid were controllable and it was fit for the coalmine operation environment.Furthermore, complex unplugging technologies employing enzymatic degradation plus acidification by HCl was effective in removing the damage caused by mud cakes of degradable drilling fluid and resuming the gas permeability of coal rock or even en- hance it by a ratio between 15.47% and 38.92%.Technological achievements of this paper can help to resolve the contradiction between borehole maintaining and reservoir protection, and also offer powerful theoretical and techni- cal foundation for drilling technology optimization and production capacity enhancement in vertical, horizontal and multi-lateral drilling for coalbed methane exploration.

Keywords: unconsolidated and soft coal sea; coalmine methane drainage and exploitation; degradable drill-ing fluid; borehole maintain; reservoir protection.

1 可降解钻井液的提出

根据抽采对象的不同,可将煤矿瓦斯抽采分为本煤层瓦斯抽采、邻近层瓦斯抽采和采空区瓦斯抽采[1]。由于钻井液性能测试实验报告我国地质构造条件复杂,成煤时代多,煤矿区分布广,煤储层特征差异大。简单起见,可划分为正常煤体结构的硬煤层和构造发育的松软煤层两种典型类型。对于松软煤层,由于煤与瓦斯突出、煤层松软、机械强度低等原因,采用清水或空气等常规排粉钻进方式时易出现塌孔、卡钻或喷孔等问题,打钻成孔困难,瓦斯抽采效率低。松软煤层的煤层气开发是我国煤层气产业化面临的最严峻的挑战之一[2~4],在此类煤层中钻进护孔技术是目前亟待解决的技术难题之一[5~6]。

为达到较好的护孔效果,通常在钻井液中添加纤维素、胍尔胶和生物聚合物等聚合物。纤维素和胍尔胶等起到增粘、降低摩阻和润滑作用以保持井壁稳定,而生物聚合物可以增强钻井液在水平井段内的岩屑悬浮能力。尽管这类钻井液对储层的伤害比传统泥浆要小,但还是会在井壁上形成了低渗透的滤饼。滤饼的不充分降解会极大地影响井壁的流动能力,结果是显著降低生产井的产量。因此,特别是在松散地层和高渗透性地层中,必须清除渗滤到地层中的钻井液以及沉积在井壁上的滤饼,以实现产量最大化。

近年来,针对松散地(储)层钻进中护孔和储层保护的矛盾,我们提出了一种环境友好的可降解钻井液的研究思路[7~11]:在钻进时能保持孔壁稳定,而在钻进工作结束后,钻井液能在生物酶和无机酸作用下实现降解、粘度下降,先前形成的滤饼破除、产层流体的流动性增强、恢复地下流体资源解吸扩散通道,达到提高地下流体资源产量效果的目的。

本文在上述研究基础上,在理论上分析了松散煤层钻进用可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等方法对可降解钻井液的性能进行了综合研究。

2 可降解钻井液的作用机理

2.1 可降解钻井液的护孔作用机理

可降解钻井液主剂由粘土稳定剂(如KCl)、水溶型或酸溶型架桥粒子/加重剂(一般为细粒CaCO3或无机盐)、降滤失剂(主要是天然植物胶如淀粉或纤维素或胍尔胶)、流型调节剂(如生物聚合物XC)等组成,这些处理剂共同起到增粘和降低摩阻作用;当钻进结束后,加入能降解各种聚合物的生物酶破胶剂[12~15]和能溶解细粒CaCO3无机酸(通常是15%的HCl[12,14])或有机酸[13,16]来清除聚合物滤饼(主要由聚合物和CaCO3组成)对储层渗透性的伤害。下面分别阐述各种处理剂的作用机理。

(1)粘土稳定剂可以用来抑制煤岩中粘土矿物遇水后膨胀;

(2)水溶型或酸溶型架桥粒子可以在煤岩表面的孔隙或裂隙孔喉处形成架桥,起到防止钻孔漏失的目的,同时CaCO3或无机盐也可以适当增加钻井液的密度,起到平衡地层压力的作用;

(3)天然植物胶大分子物质相互桥接,滤余后附在孔壁上形成隔膜。这些隔膜薄而坚韧,渗透性极低,可以阻碍自由水继续向煤层渗漏(图1)。同时,这类聚合物钻井液具有良好的包被抑制性,能有效地抑制钻屑分散。另外,这类具有强亲水基团的长链环式高分子化合物易溶于水,形成的水溶液具有较高粘度,可以增强钻孔孔壁表面松散煤粒之间的胶结力,起到加固松软煤层孔壁的效果;

图1 Na-CMC在粘土颗粒上的吸附方式

(4)生物聚合物XC是一种优良的流型调节剂,用它处理的钻井液在高剪切速率下的极限粘度很低,有利于提高机械钻速;而在环形空间的低剪切速率下又具有较高的粘度,并有利于形成平板形层流,可增强钻井液在近水平煤层钻孔中的携岩效果。

2.2 可降解钻井液的生物降解作用机理

所谓降解,是指在物理因素、化学因素或生物因素等的作用下聚合物分子量降低的过程。从实用的角度出发,聚合物降解可分为热降解、机械降解、光化学降解、辐射化学降解、生物降解及化学降解等不同的引发方式[17]。下面以胍尔胶为例,阐述生物酶降解聚合物的作用机理。

胍尔胶属于半乳甘露聚糖类,所用胍尔胶分子主链由β-1,4糖甙键将D-甘露糖单元连接而成,D-半乳糖取代基通过α-1,6糖甙键接在甘露糖主链上,沿甘露糖主链随机分布,半乳糖与甘露糖单元之比约为1:1.6。半乳甘露聚糖特异复合酶可有效地水解半乳甘露聚糖,它由两种O键水解酶组合而成,两种酶的降解机理如图2所示。

第一种O键水解酶是α-半乳糖甙酶(蜜二糖酶),专门作用于半乳糖取代基,可用来水解末端的非还原性α-D-半乳糖甙键。第二种O键水解酶过去常用来分解胍尔胶分子,在此专门作用于甘露糖主链,这种水解酶被称作β-1,4甘露聚糖环内水解酶,可随机水解β-1,4-D-甘露糖甙键[18]。

后续室内实验采用的酶制剂是几种生物酶的复配物。特种酶1号(SE-1)以纤维素甙键特异酶和半乳甘露聚糖特异复合酶为主,特种酶2号(SE-2)和特种酶4号(SE-4)以半乳甘露聚糖特异复合酶为主。

图2 胍尔胶糖甙键特异酶的降解机理

图3 胍尔胶钻井液的降粘曲线

3 可降解钻井液的室内试验

3.1 降粘效果评价

在理论分析基础上,进行了生物酶降解聚合物的室内实验,以钻井液流变参数为主要评价指标,用几种特种酶来降解单一聚合物或复配聚合物。将生物酶分别加入单一聚合物和复合聚合物中,研究生物酶对这些可降解钻井液的降粘效果,将表观粘度(AV)、塑性粘度(PV)和动切力(YP)随时间的变化关系绘制成曲线如图3~图5所示。

3.1.1 单一聚合物钻井液

从图3可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.5%的胍尔胶钻井液的表观粘度从23.5mPa·s降低到5mPa·s。塑性粘度和动切力也呈现出类似的变化规律。

由图4可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.75%的羧甲基纤维素钻井液的表观粘度从20.5mPa·s降低到6mPa·s。

由于特种生物酶SE-1同时含有纤维素甙键特异酶和半乳甘露聚糖特异复合酶,它对胍尔胶和羧甲基纤维素均有较好的降解效果。

3.1.2 复配聚合物

从图5可以看出,在特种酶SE-2的作用下,在46h之内,由质量浓度为0.3%羧甲基纤维素和0.2%胍尔胶组成的复合聚合物钻井液的表观粘度从25.5mPa·s降低到5mPa·s。随着时间的变化,塑性粘度和动切力也按类似的规律下降。

由图3~图5可以看出,在生物酶作用下,聚合物能实现有效的降解,聚合物大分子逐渐断链变成小分子,钻井液粘度降低,在煤储层中的流动性增强,从而恢复煤层气解吸释放的通道。

图4 羧甲基纤维素钻井液的降粘曲线

图5 复配聚合物钻井液的降粘曲线

3.2 滤饼清除实验

实验目的是通过观察可降解钻井液滤饼在生物酶破胶剂(和无机酸)的作用下滤饼表面的变化情况、考察滤饼的解堵效果(结果分别如图6~图7所示)。可降解钻井液的配方如下:

配方1:400ml水+2.6gCMC+4gDFD+4.8gCaCO3+NH4HCl(调节pH),先后采用0.00625%的SE-4溶液和5%HCl浸泡滤饼。

配方2:400ml水+1.6gCMC+8g膨润土,采用0.04%JBR溶液浸泡滤饼。

配方1的滤饼清除实验结果如图6所示,可以看出:单独使用生物酶SE-4只能清除该套体系中的CMC(图6-b),而对CaCO3等影响不大。当用5%HCl浸泡2h后,滤饼变得非常薄,说明CaCO3已与HCl充分反应[1]。

图6 滤饼的外观变化图

按照配方2所配制钻井液的滤饼清除实验结果如图7所示。由于这种配方中只有CMC这种聚合物,在用JBR溶液浸泡5h后,可降解钻井液的滤饼已基本降解完全。

图7 JBR作用下可降解钻井液(配方4)滤饼清除情况

3.3 煤岩气体渗透率测试

煤矿井下瓦斯抽放的最终目的就是恢复煤层的渗透率,获得较高的瓦斯抽放量。因此,渗透性的恢复对于可降解钻井液而言是一个更加直接的衡量指标。采用JHGP智能气体渗透率和JHLS智能岩心流动实验仪对可降解钻井液进行渗透性恢复实验,实验步骤详见参考文献[11]。

煤岩气体渗透率测试结果(表1)表明:晋-3煤样经过“污染—生物酶降解—酸化”三个阶段,其渗透率表现出“下降—上升—上升”的趋势,而且经过生物酶降解和酸化(也包括之前的加热处理)之后,煤岩的气体渗透率甚至超过了污染前的气体渗透率(如图8所示,推测盐酸亦与煤岩中的方解石和白云石发生反应,增大了煤岩孔隙裂隙),这也证实了“生物酶降解—酸化处理”的综合解堵工艺是有效的,有利于提高煤层气藏的采收率。

表1 煤岩气体渗透率

注:(1)下游压力(出口压力)为0.1MPa(即1个大气压);(2)△K=(K4-K1)*100/K1。

图8 不同处理阶段煤岩平均气体渗透率变化情况

4 结论

论文在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性评价、滤饼清除实验和煤岩气体渗透率测试等实验手段对可降解钻井液进行了综合研究,主要得出以下结论:

(1)可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;

(2)生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间);

(3)研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

参考文献

[1]王兆丰,刘军.2005.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,36(3),29~33

[2]苏现波,王丽萍.2001.中国煤层气产业化的机遇、挑战与对策[C].瓦斯地质新进展,222

[3]饶孟余,杨陆武,冯三利等.2005.中国煤层气产业化开发的技术选择[J].特种油气藏,12(4),2

[4]袁亮.2007.淮南矿区煤矿先抽后采的瓦斯治本技术[J].中国煤炭.33(5),5~7

[5]张群.2007.关于我国煤矿区煤层气开发的战略思考[J].中国煤炭,33(11),9~11

[6]国家发展和改革委员会.2005.煤层气(煤矿瓦斯)开发利用“十一五”规划[R]

[7]蔡记华,乌效鸣,潘献义等.2004.暂堵型钻井液的试验研究.地质科技情报[J],23(3):97~100

[8]蔡记华,乌效鸣,刘世锋.2004.自动降解钻井液在水井钻进中的应用[J].煤田地质与勘探,32(5):52~54

[9] Jihua Cai, Xiaoming Wu, Sui Gu.2009.Research on environmentally safe temporarily plugging drilling fluid in water well drilling [C] .SPE 122437

[10] 蔡记华, 乌效鸣, 谷穗等.2010. 煤层气水平井可生物降解钻井液流变性研究 [J] . 西南石油大学学报(自然科学版), 32 (5): 126~130

[11] 蔡记华,刘浩, 陈宇等.煤层气水平井可降解钻井液体系研究 [J] .煤炭学报, 已录用

[12] Beall, Brian B., Tjon-Joe-Pin, Robert, Brannon, et al.1997.Field experience validates effectiveness of drill-in fluid cleanup system [C] .SPE 38570

[13] Frederick O.Stanley, Phil Rae, Juan C.Troncoso.1999.Single step enzyme treatment enhances production capacity on horizontal wells [C] .SPE 52818

[14] K.P.O' Driscoll, N.M.Amin, I.Y.Tantawi.2000.New treatment for removal of mud-polymer damage in multilateral wells drilled using starch-based fluids [J] .SPE Drilling Completion, 15 (3): 167~176

[15] Hylke Simonides, Gerhard Schuringa, Ali Ghalambor.2002.Role of starch in designing non-damaging completion and drilling fluids [C] .SPE 73768

[16] R. C.Burton, R. M.Hodge, Ian Wattie, Jane Tomkinson. 2000.Field test of a novel drill-in fluid clean-up technique[C] .SPE 58740

[17] [德] W.施纳贝尔.1998.聚合物降解原理及应用 [M] .科学出版社, 180~187

[18]李明志,刘新全,汤志胜等.2002.聚合物降解产物伤害与糖甙键特异酶破胶技术 [J].油田化学, 19(1), 89~92

煤层气低密度钻井液技术研究

左景栾1 孙晗森1 吕开河2

(1.中联煤层气有限责任公司 北京 100011;2.中国石油大学石油工程学院,山东东营 257061)

摘要:针对煤储层井壁易坍塌、钻井液易污染煤储层等难题,研发出了中空玻璃微球低密度钻井液体系。该钻井液具有良好的流变性和滤失性,泥饼薄而致密。同时具有很好的抗温性、抗污染性能、防塌性能、沉降稳定性和保护储层作用。在沁南示范区成功进行了1口井的现场试验,有效防止了液体对煤储层的污染。

关键词:煤储层 污染 低密度钻井液 流变性 滤失性 现场试验

Study of Light Weight Drilling Fluid for Coalbed Methane ZUO Jingluan1,SUN Hansen1,LV Kaihe2

( 1. China United Coalbed Methane Co. ,Ltd,Beijing 100011; 2. College of Petroleum Engineering,China University of Petroleum,Dongying 257061,Shandong,China)

Abstract: In view of the collapsibility of borehole face and coal formation pollution resulted from drilling flu- id,this paper researched the light weight drilling fluid,whose density was reduced by adding hollow glass micro- spheres. The study shows that the light weight drilling fluid has good rheological property and filtration property, and its mud cake is thin and tight. Moreover,this drilling fluid has a lot of good properties,such as temperature tolerance,antipollution,anti-sloughing,sedimentation stability and formation protection. This light weight drill- ing fluid has been applied in one well for field trial successfully at QinNan demonstration plot. Good performance on protecting coal formation from pollution has been observed.

Keywords: coal formation; pollution; light weight drilling fluid; rheological property; filtration property; field trial

基金项目: 国家科技重大专项 《大型油气田及煤层气开发》项目 60 “山西沁水盆地南部煤层气直井开发示范工程”( 项目编号: 2009ZX05060) 资助。

作者简介: 左景栾,女,工程师,现在中联煤层气有限责任公司。通讯地址: 北京市东城区安定门外大街甲88 号; 邮编: 100011。Email: zuojingluan@ hotmail. com。

我国煤储层一般具有孔隙压力低、渗透性差、裂隙发育等特点,钻井液侵入易导致煤层污染,影响煤层气的产量。在钻探施工中应根据不同的要求和地层,以节约成本、保证井内安全、保护目的煤层原生结构不受伤害为原则,选用合适的钻井循环介质。

本文针对沁南示范区煤储层井壁易坍塌、钻井液易污染煤储层等难题,研发出了有利于保护井壁稳定、减少储层污染的低密度钻井液体系,并成功进行了现场应用试验。

1 煤储层损害原因与机理研究

对从沁南示范区采回的煤样分别进行了物性参数测试、X射线衍射分析、扫描电镜分析等测试分析,结果表明,煤储层具有低孔、低渗、裂缝发育的特征。同时,煤储层还具有低压力和低含水饱和度的特点。这些特点决定了在钻井完井过程中如果不采取有效措施,储层将受到很大伤害,造成渗透率下降,产量降低。钻井过程中储层损害原因主要有以下方面。

1.1 应力敏感性损害

应力对煤岩渗透率的影响见表1所示。从表1可知,当有效应力升高时,煤岩渗透率急剧下降,表明具有很强的应力敏感性。

表1 煤岩应力敏感性实验结果

1.2 速敏性损害

使用1%标准盐水进行了流动实验,实验结果见表2。由表2可以看出,标准盐水在煤样中的流速增加,渗透率不但不下降,反而有所上升,说明不存在速敏。在流速较大时,实验中观察到有细小煤屑颗粒流出,由于颗粒极小,不足以堵塞渗流通道,反而使煤岩渗透性增加。

表2 速敏性实验结果

1.3 水锁损害

煤层中微孔隙可以看做是无数曲折弯曲的毛细管,而煤层一般是弱亲水的,当外来液体接触煤层时,会产生强烈的吸水作用。液体的侵入对储层渗透率的伤害十分明显。试验表明,当液体饱和度达到10%时,气体渗透率伤害达50%,而当液体饱和度为30%时,气测渗透率几乎降为0。

1.4 固相侵入

煤岩中存在微裂缝,作业过程中固相和液相容易侵入。如果不对此采取有效措施,则固相和液相将大量侵入储层,并且随着后续作业的进行,其侵入量和侵入深度不断增加,造成储层渗透率大幅度降低,严重污染储层。

由于煤储层压力低,裂缝及层理发育,钻井液侵入储层是主要的损害机理,因此应尽量采用低密度钻井液体系,防止钻井液大量侵入储层。

2 保护煤储层的低密度钻井液研究

2.1 密度降低剂的选择

由煤储层损害原因与机理分析可知,压差是影响煤储层损害的重要因素,压差越大煤储层损害越严重。

中空玻璃微球是一种单胞碱石灰硅酸硼类材料,外观为白色粉末,呈化学惰性,抗高温高压,形成的钻井液真实密度低,可降至0.6~1.0g/cm3,工艺简单,风险小,储层保护效果好,完全能满足低压煤层气井及部分欠平衡井的钻、完井施工。该技术的研究应用,将丰富低压煤储层钻井液种类,改变目前煤储层损害较为严重的局面。

2.2 中空玻璃微球性能评价

(1)中空玻璃微球密度

室内对中空玻璃微球样品进行多次测定,得到其真实密度为0.37~0.45g/cm3。

(2)中空玻璃微球粒径大小和分布范围

采用激光粒度仪对中空玻璃微球进行粒度分析,测得90%的中空玻璃微球粒度小于123μm。

(3)中空玻璃微球机械破裂强度与抗压强度

机械破裂强度是指单位体积的中空玻璃微球在机械压力装置下直接受压发生破裂的最高压力,而抗压强度是指在不同恒定温度下,一定浓度的中空玻璃微球在水中承受外压力不发生破裂沉淀的最高压力。对于钻井液来讲,后者的性能反映材料的稳定性,更为重要。中空玻璃微球强度实验结果见表3。

表3 中空玻璃微球强度

由表3可见,中空玻璃微球抗压性能好,在30MPa压力下不破裂。

(4)中空玻璃微球含量与密度关系

分别在自来水中加入不同数量的中空玻璃微球,并测定加入后的液体密度。随着中空玻璃微球含量增大,液体密度降低,40%含量时,密度可降低到0.75g/cm3。

2.3 中空玻璃微球对钻井液性能的影响评价

(1)膨润土浆配制

400ml水+12g膨润土+0.06g纯碱,搅拌20min,老化24h备用。

(2)中空玻璃微球对钻井液性能的影响

图1表明,钻井液滤失量随中空玻璃微球的加入而降低,10%含量之前,滤失量降低最快,10%~30%时,降低速度减慢。

图1 钻井液API失水量与中空玻璃微球含量关系

由图2可以看出,随着中空玻璃微球含量的增大,钻井液的塑性粘度增加,但加量低于30%时,塑性粘度增加幅度不大,加量大于30%时,塑性粘度增加明显。

由图3可以看出,随着中空玻璃微球含量的增大,钻井液动切力增加,加量为40%时,动切力由3Pa增加到近5.1Pa。

经中空玻璃微球水基钻井液污染后的岩心,其最终渗透率恢复率可达95%,而经未加有中空玻璃微球的钻井液污染后的岩心,其最终渗透率恢复率不足60%。因此,中空玻璃微球钻井液有利于保护储层,同时形成的泥饼易于清除。

2.4 中空玻璃微球低密度钻井液研究

(1)单剂筛选

在基浆中加入一定数量的增粘剂,高搅20min后测其室温性能。然后分别在120℃和150℃下老化16h,冷却至室温后再测其性能。所评价的各种增粘剂中DSP2抗温性能较好,在增粘切的同时还具有较好的降滤失作用,故选DSP2为钻井液体系中的增粘剂;LY1无论在常温还是高温老化后都具有很好的降滤失效果,说明其具有较好的抗温性能,可作为钻井液体系的降滤失剂使用;胺基聚醇AP1、硅酸钠、硅酸钾及高浓度的甲酸钠均具有很好的抑制性,胺基聚醇AP1与某些盐配合使用抑制效果更好;封堵防塌剂FF2具有良好的封堵防塌作用;几种表面活性剂能较好的降低界面张力,其中SP80效果最好,且SP80表面活性剂的表面张力随温度变化而变化的幅度不大,说明其具有较好的抗温能力。

图2 钻井液塑性粘度与中空玻璃微球含量关系

图3 钻井液动切力与中空玻璃微球含量关系

(2)钻井液配方研究

①优选钻井液配方及性能

在增粘剂、降滤失剂、抑制剂和表面活性剂确定以后,利用各种处理剂的特性对各种处理剂的用量进行优选优配,以得到既满足钻井工程要求,又利于保护储层的钻井液配方。经过大量实验,优选的钻井液配方及性能见表4。

表4 优选钻井液配方及性能

由表4可以看出,优选钻井液具有良好的流变性能和滤失性能,泥饼薄而致密,API滤失量小于5ml,高温高压滤失量小于15ml。120℃老化16h后钻井液性能稳定,说明具有很好的抗温性。

在优选配方中分别加入不同数量的劣质土粉,优选钻井液污染前后性能稳定,说明其具有良好的抗污染性能。

优选配方回收率远大于清水回收率,线膨胀量远小于清水线膨胀量,说明优选配方能有效抑制泥页岩水化膨胀分散,具有很好的防塌性能。

②封堵性能评价

由表5可以看出,优选配方对不同渗透性砂层均具有较好的封堵效果。

表5 砂层封堵实验数据

③沉降稳定性评价

实验结果表明,优选配方高温的沉降稳定性很好,静置48h后,钻井液的上下密度差仅为0.02g/cm3。

④钻井液保护储层性能评价

从表6可以看出,岩心的渗透率恢复率较高,说明优选钻井液具有很好的保护储层作用。

表6 渗透率恢复实验

3 钻井液现场试验研究

在室内理论和实验研究的基础上,在沁南示范区进行了1口井的现场试验研究。

3.1 试验井基本情况

试验井完钻井深690.00m,完钻层位:石炭系太原组,目的煤层为二叠系下统山西组3#煤层(639.00~645.00m)。

3.2 现场试验

现场试验配制钻井液密度为0.95g/cm3,粘度为55Pa·s,pH值8。从井深为590m开始,一直使用该钻井液到该井完钻为止,施工顺利。

现场试验结果表明,中空玻璃微球在钻井液中起到了降低密度的作用,钻井液密度0.95g/cm3,该钻井液的失水较小;粒度较小的玻璃微球还具有很好的封堵作用,对煤层的吼道进行暂堵形成一层保护膜,有效防止了液体对煤层的污染。

参考文献

冯少华,侯洪河.2008.煤层气钻井过程中的储层伤害与保护[J].中国煤层气,5(3):16~19,92

韩宝山.2002.欠平衡钻井技术与煤层气开发[J].煤田地质与勘探,30(4):61~62

赖晓晴,楼一珊,屈沅治等.2009.我国煤层气开发钻井液技术应用现状与发展思路[J].石油天然气学报,31(5):326~328

刘保双,杨凤海,汪兴华等.2007.煤层气钻井液工艺现状[J].国外油田工程,(8):27~33

杨陆武,孙茂远.2002.中国煤层气藏的特殊性及其开发技术要求[J].天然气工业,22(6):17~19

周一帆,王德利,刘力.2010.煤层气钻井对储层的伤害机理分析[J].煤,19(7):87~88,92

钻井液、完井液引起储层损害评价新方法——高温高压岩心动态损害评价系统的研究

余维初1,2,3 苏长明1 鄢捷年2

(1.中国石化石油勘探开发研究院,北京100083;2.中国石油大学(北京),北京102249;3.长江大学,荆州434023)

摘要 高温高压岩心动态损害评价系统是石油勘探开发中评价储层损害深度与程度的新的评价实验方法与实验仪器,它可以测量岩心受入井流体损害前各分段的原始渗透率值,然后不需取出岩心,就可以直接在模拟储层温度、压力及流速条件下,用泥浆泵驱替高压液体罐中的入井流体,在岩心端面进行动态剪切损害。损害过程完成后,也不需取出岩心,而是通过换向阀门改变流体的流动方向,再由平流泵驱替液体,测量储层岩心受损害后各段的渗透率值。通过对比岩心各分段的渗透率变化情况,即可确定岩心受入井流体损害的深度和程度,从而优选出满足保护油气层需要的钻井液与完井液。目前“评价系统”及配套智能化软件已在多个油田企业投入使用,并取得了良好的应用效果。

关键词 岩心 储层保护 动态损害 评价系统 钻井液与完井液

A New Method Used to Evaluate Formation Damage Caused by Drilling & Completion Fluids——Investigation of the HTHP Core Dynamic Damage Evaluation Testing System

YU Wei-chu1,2,3,SU Chang-ming1,YAN Jie-nian2

(1.Exploration & Production Research lnstitute,SlNOPEC,Beijing100083;2.China University of Petroleum,Beijing102249;3.Yangtze University,Jingzhou434023)

Abstract The HTHP Core Dynamic Damage Evaluation Testing System is newly developed a new method and apparatus used for evaluation of the extent of formation damage caused by drilling and completion fluids in petroleum exploration and development.It can be used to measure the original permeability of each section of the core sample before contamination by the drilling or completion fluid.Then,the core does not need to be taken out and the process of dynamic damage can be directly conducted by flushing with the drilling or completion fluid using mud pump under the conditions of the simulated formation temperature,pressure and flow rate.After the damaged process is completed,the core is still kept in the holder and the permeability of each section of the core sample after damage can be measured by altering the flow direction with the reversal valve and flushing a fluid(cleaning water or kerosene)by the constant flow-rate pump.By comparing the permeability data that occur at each section of the core sample,the damage level and invasion depth can be determined,and the drilling and completion fluids that meet the requirements of formation protection can be selected.Currently,the new evaluation method,the testing system and associated software for formation damage induced by drilling fluid and completion fluids were applied in several oilfields widely,and favorable results have been obtained.

Keywords core formation protection dynamic damage testing system drilling and completion fluids

随着世界石油生产的不断扩大与发展,油层伤害与保护的问题日益为各国石油工程师们所关注。油层伤害一旦产生,其补救措施需要付出昂贵的代价。因此,国外早在20世纪40~50年代就开始了油层伤害与保护的室内试验研究。我国也在20世纪70~80年代开始着手研究油层伤害问题,并建立了相应的储层损害评价实验方法及相关仪器。然而随着油气田勘探与开发逐步转向深层,原有的储层损害评价方法已不能适应。因此,要想在油气层保护技术领域取得突破性成果,有必要建立一套完整的、能够适应更深的地层勘探开发的储层损害评价新方法和与之相配套的评价手段,既可以测量岩心各段的原始和损害后渗透率,又能模拟储层温度、压力及泥浆上返速度等条件对岩心进行动态损害评价的新方法、新仪器。

本文主要介绍了该“评价系统”的设计思路、设计原理、技术性能指标、实验参数计算方法及其应用情况。

1 “评价系统” 的设计思路和工作原理

1.1 设计思路

(1)该“评价系统”首先要能够测量岩心各段的原始渗透率(Koi)和受损害后渗透率(Kdi)。根据本项目组的专利技术渗透率梯度仪(专利号:91226407.1)的工作原理和设计思路,由达西定理公式便可很方便地计算出岩心各段损害前后的渗透率参数。

(2)根据本项目组专利技术新型智能高温高压岩心动态失水仪(专利号:ZL200420017823.7)的工作原理和设计思路,在模拟地层温度、压力、井眼环空泥浆上返速率的条件下对岩心某个端面进行动态剪切污染损害实验。

(3)根据本项目组专利技术高温高压岩心动态损害评价实验仪(专利号:200410030637.1,ZL200420047524.8)在渗透率测量完成后,不需取出岩心,而是在模拟地层温度、压力、井眼环空泥浆返速的条件下对岩心进行动态污染实验。在对岩心进行动态损害时,利用相关阀门,关闭岩心多段渗透率的测量机构,采用特制泥浆泵,在模拟地层温度、压力和井眼环空泥浆上返速度的条件下,对岩心的某个端面进行动态剪切污染,动态污染采用端面循环剪切式结构。实现一次装入岩心就可以在模拟地层温度、压力、井眼环空泥浆返速的条件下对岩心进行动态污染,以及污染前后岩心多项渗透率参数测试的评价实验研究。

(4)在多段渗透率测试过程中“评价系统”的重要组成部分使用了本项目组的专利技术高压精密平流泵(专利号:ZL02278357.1)首次实现恒流、恒压以及无脉动微量液体的输送技术。

(5)“评价系统”的核心部分使用了本项目组的专利技术岩心夹持器(专利号:ZL93216048.4)首次采用金属骨架硫化技术、“O”型密封圈技术以及橡胶的自封原理,打破了老型产品的挤压式密封结构,顺利地实现了沿岩心轴向建立多测点技术。

该“评价系统”的一个突出特点是将岩心损害前后各段渗透率变化测试和对岩心端面的动态污染损害机构有机地结合起来,从而顺利地实现了设计目的。

1.2 仪器的组成结构及工作原理

为了实现在同一台仪器上完成岩心的多段渗透率测试和模拟井下条件对岩心的动态损害,从而准确高效地评价钻井液保护油气层的效果,根据钻井工艺要求和上述设计思路,把高温高压岩心动态损害评价系统设计成如图1所示的工艺流程,它主要由精密平流泵、泥浆泵、液体罐、端面动循环并带多个测压点的岩心夹持器、流量计、电子天平、气源、压力传感器、温度传感器、环压泵、回压控制器、加热系统、数据采集与处理系统等部分组成。

图1 高温高压岩心动态损害评价系统流程

1—气源;2—高压减压阀;3—高压液体罐;4—泥浆泵;5—流量计;6—电子天平;7—回压控制器;8—环压泵;9—端面循环的多测点岩心夹持器;10—阀门;11—压力传感器;12—精密平流泵;13—排污阀;14—数据采集器;15—数据处理系统(计算机、打印机);16—加热体

其主要工作原理是:当关闭泥浆泵及相关阀门时,由精密平流泵驱替可进行岩心损害前后渗透率的测试;而当打开泥浆泵、流体管路及相关阀门时,可对液体罐中的钻井液或完井液在实际储层条件下进行循环,从而实现对储层岩心端面进行动态损害模拟。软件界面如图2右上角所示。

“评价系统”由两大部分组成:钻井过程的动态损害仿真系统和多段渗透率测试系统。在动态损害仿真系统中(如图2左边部分),氮气瓶给泥浆罐加压,泥浆循环泵控制流量,使钻井液以一定的压力和流量从泥浆罐里泵出,通过岩心夹持器与岩心的端面接触,对岩心端面进行高温高压动态损害评价实验,最后流回泥浆罐,形成密闭循环。在压力作用下,泥浆中的液体经过岩心而滤失,其动态失水经过管线流到电子天平称重,就可以测量出岩心的动失水速率等多项实验参数。

在渗透率测试部分(如图2右边部分),精密平流泵驱动实验液体进入岩心,经过岩心流至电子天平。另外,多个压力传感器实时采集岩心各测压点的压力值,根据达西定理进而可以算出岩心损害前后各分段的渗透率参数。

图2 高温高压岩心动态损害评价系统软件界面

1.3 数据采集与控制原理

1.3.1 硬件设计的总体思路

该“评价系统”控制部分硬件设计应具备以下主要功能:①温度控制,模拟井下高温工况;②流量控制,能够根据流量设定值准确地控制磁力泵的排量,从而控制岩心端面钻井液的流速,以模拟钻井作业过程中实际泥浆环空返速;③围压监测,岩心夹持器围压通过步进电机控制,仪器能够根据设定值自动控制并监测压力,实时显示在人机交互界面上;④仪器工作压力监测,泥浆循环的工作压力由气源调节给定,同时受泥浆温度的影响,软件仪器自动检测压力参数;⑤动滤失量计量,钻井液对岩心的损害是否已经完成,主要是看动滤失速率,当损害已充分时,动滤失速率曲线上升趋于平衡,不再变化或变化微小,说明钻井液对岩心的动态损害实验已经完成,这个过程一般需要150min,滤纸的动静滤失速率道理也是一样。

1.3.2 软件部分

该“评价系统”控制软件的人机交互、数据处理等功能由PC机完成,借助PC机强大的绘图、数据处理功能为用户提供一个实时性好、稳定性强、界面直观、使用方便的操作管理平台。用户可通过计算机软件非常清晰地掌握整个仪器运行的情况,可方便、及时地对实验过程中的各项参数进行调整,并对数据进行分析。为研究人员提供友好、便捷的人机交互全中文界面及数据处理环境,同时实现数据的存储,实验曲线的绘制,数据报表的输出和历史数据的查询等功能,其中包括流体通过岩心的孔隙体积倍数,岩心各段的渗透率、渗透率损害率、渗透率恢复率、钻井液与完井液通过岩心时的动滤失速率等实验参数,并且由计算机直接打印出实验数据报表,“评价系统”控制软件的人机交互主界面见图2所示。

1.4 主要技术指标

该“评价系统”的主要技术性能指标如下:(1)钻井液与完井液污染压力:0~10MPa,测量岩心渗透率流动压力最大可达60MPa;(2)工作温度:室温~150℃(最大可达230℃);(3)岩心端面流体线速度:0~1.8m/s;(4)实验岩心规格:人造或天然储层岩心,其尺寸为φ25×25-90;(5)测压精度:±2‰;(6)钻井液用量:2~3L;(7)渗透率测量范围:(1~5000)×10-3μm2;(8)电源:220V,50Hz(要求使用稳压电源)。

与其他油气层损害评价实验装置相比,该“评价系统”无论在工作压力和工作温度方面,还是在岩心的渗透率测量范围方面,均具有明显优势。不难看出,它适用于各种渗透性储层,以及出现异常高压或异常低压的储层,还适用于在井底温度超过150℃的深井中应用。

2 实验参数及计算方法

2.1 V返的计算

在钻井过程中,钻杆和钻铤处的环空返速可用下式进行计算:

油气成藏理论与勘探开发技术

式中:Q为钻井现场泥浆泵排量(L/s);D1,R分别为钻头直径和半径(in);D2,r分别为钻杆或钻铤的直径和半径(in);

为泥浆在环空处的上返速度(m/s)。

岩心端面处剪切速率的大小通过使用变频器调节泥浆泵的转速来实现,选择合理排量的泥浆泵就可以任意模拟钻井现场泥浆泵的排量。在钻井过程中,根据泥浆环空水力学计算结果,当钻杆或钻铤处环形空间泥浆的上返速度

推荐值为0.5~0.6m/s时,才能形成平板型层流,从而满足钻井工艺的要求[4]。

2.2 岩心动滤失速率的计算

根据钻井液动滤失方程,钻井液或完井液通过岩心时的动滤失速率可使用下式计算:

油气成藏理论与勘探开发技术

式中:fd为动滤失速率(mL/cm2·min);Δθ为Δt时间内的动滤失量(mL);Δt为渗滤时间(s);A为岩心端面渗滤面积(cm2)。

2.3 动态污染损害前后岩心各段渗透率的计算

在一定压差的作用下,流体可在多孔介质中发生渗流。一般情况下,其流动规律可用达西定律来描述。因此,在动态污染前后,岩心各段渗透率参数的计算可通过应用达西定律公式来实现。由于是多点测试,可以将达西定律公式写成:

3 实施效果

该项目技术产品已在江汉、江苏、大庆、大港、吉林、中原、南方勘探公司、克拉玛依、塔里木等各油田单位推广了五十多台套,大量的实验研究表明,使用效果良好,它可以测量出岩心沿长度方向的非均质性,并能判断同一岩心在受钻井、完井液损害前后各段渗透率和损害深度程度,也可评价各种增产措施的效果,优选钻井、完井液体系配方、优化增产措施,达到保护油气层的目的,并认识了油气层特性,提高了油气田的勘探和开发效率。上述各油田通过该“评价系统”筛选出的优质钻井、完井液,起到了保护油气层的效果,既降低了生产成本,又提高了油气井产量,已经取得了巨大的经济效益和社会效益。该成果的推广应用为保护油气层技术研究和油气田评价工作的开展提供了全新的评价手段和评价方法,还使得其在理论和实验技术上获得了重大突破,其实验研究结果对油气田勘探与开发方案的科学决策、油气田的发现、提高油气井产量、延长油田的开发周期以及保护油气层领域的科学研究将起到十分重要的指导作用。

该评价新方法以及相关技术产品使科研成果及时转化为生产力,填补了我国在相关实验技术领域装备制造上的空白,具有同类技术的国际先进水平。

参考文献

[1]李淑廉等.JHDS-高温高压动失水仪的研制.江汉石油学院学报[J],1988,10(1):32~35.

[2]余维初,李淑廉等.渗透率梯度测试仪的研制.石油钻采工艺[J],1995,17(5):82~86.

[3]樊世忠.《油气层保护与评价》[M].北京:石油工业出版社.1988.

[4]Bourgoyne A T,et al.,Applied Drilling Engineering.SPE Textbook,1991.

[5]岩石物性渗数测试装置CN2188205Y全文1995.1.25.

[6]一种岩心物性能自动检测装置CN2342371Y,1999.10.6.

[7]Joseph Shen J S,Brea,Calif Automated Steady State Relative Permeability Measurement System US4773254M1988.9~27.

[8]Appartus and method for measuring relative permeability and capillary pressure of porous rock.US5297420,1994.3~29.

关于钻井液性能测试实验报告和钻井液性能测试实验报告的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 钻井液性能测试实验报告的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于钻井液性能测试实验报告、钻井液性能测试实验报告的信息别忘了在本站进行查找喔。
上一篇:智能仓储物流企业兰剑智能正式登陆科创板上市
下一篇:关于aiops知识图谱ppt的信息
相关文章

 发表评论

暂时没有评论,来抢沙发吧~