本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈AIOps智能,以及aiops产品对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享AIOps智能的知识,其中也会对aiops产品进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
AIOps是什么?
AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。
传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。
经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。
Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。
相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。
通常,AIOps智能运维系统包含这几个功能模块:
什么是 AIOps?
AIOps(即 人工智能 IT 运营 )是应用 人工智能 (AI) 来改进 IT 运营
AIOps智能的方法。 具体而言
AIOps智能,AIOps 使用大数据、分析和机器学习功能来执行以下操作:
通过将多个单独
AIOps智能的手动 IT 运营工具替换为单一的智能自动化 IT 运营平台,AIOps 使 IT 运营团队能够更快地作出响应,甚至主动处理慢速和中断事件,从而大幅减少工作量。
参考: AIOps
什么是AIOps?怎么促进业务提升?
智能运维的概念是Gartner在2016年率先提出,当初的英文全称为Algorithmic IT Operations,意指基于算法的IT运维。随着人工智能技术的发展,2018年Gartner将其英文全称更改为Artificial Intelligence for IT Operations,表明人工智能在IT运维领域的应用。至今短短六年,其概念还在不断融入新的认知。
当前IT运维难度增加,依靠人力堆积的传统方式运维已经无法满足数字化时代对IT运维的要求,借助更先进工具和技术手段成为应对这些挑战的必然选择。数据中心面临着从制度和流程为主驱动的时代,快速向数据与算法为主驱动的智能运维时代迈进。智能运维,已然成为迎接挑战不可或缺的科技力量和解决方案。
AIOps(Artficial Intelligence for Operations),是一种将大数据、人工智能或机器学习技术赋能传统IT运维管理的平台(技术)。AIOps智能运维可以将全栈式的运维数据进行集中化管理,不同数据领域也可以进行智能算法根因定位。其次它可以从业务场景进行跟踪,了解交易路径,对于数据进行智能分析与预测。所以智能运维是一种全新的数字化运维能力,可以配合企业的数字化转型,保障企业的业务应用能够安全稳定且高效的运行。
AIOps是什么?和AI有什么关系?
我们现在提到的 AI,更多的是依赖机器学习(包含深度学习)算法的实现的 AI 场景,或者说机器学习算法只是实现 AI 的其中一种手段。了解了上面的概念,再回到 AIOps 上来,拆分为 AI + Ops 会准确一些,也就是 Ops 与 AI 相结合可以做的事情。
AIOps 涉及的技术,从 AI 的角度,主要还是机器学习算法,以及大数据相关的技术,因为涉及到大量数据的训练和计算,从 Ops 的角度,主要还是运维自动化相关的技术。另外 AIOps 一定是建立在高度完善的运维自动化基础之上的,只有 AI 没有 Ops,是谈不上 AIOps。
如何看待AIOps的发展
从未来发展趋势来看,ITOA、AIOps会是未来增长最快的两个方向。随着以数据为核心的运维分析出现,运维市场逐渐由ITOM演变成ITOA(IT Operations Analytics),后来又提出了智能化运维(AIOps)。尽管目前肯定还是ITOM占市场的主体,但随着企业数字化转型的快速发展,IT系统数量快速增长,还有云原生架构的应用导致系统复杂度越来越高,传统运维方式已经无法满足企业的需求,因此,借助AI技术能力实现运维智能化,提高运维效率和运维质量,成为IT运维的必然趋势。现在,IT运维的发展正处于螺旋式的上升期,根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。
不过国内AIOps的落地实践也面临着挑战:
1. 不切实际的期望。AIOps的技术还不是完全成熟,很多用户很难将智能自动化的运维与实际可实现的案例分开,认为AIOps已经能够实现智能自动化,而实际上现在距离真正的智能运维还有很长的一段路要走。
2. 有价值的案例需要实践时间。AIOps平台需要通过不断的学习观察,在一定的时间、发生频率内,才能将正常的数据范围和模式跟解决方案结合起来,以建立合适的观测模型,为后续的业务运营提供保障。
3. 市场的转变。AIOps的市场正处于不断的变化发展中,监控供应商正在向上层业务移动,AIOps平台的供应商则正在进入监控领域,而ITSM供应商却只是将AIOps的功能视为扩展其范围的一种手段,随着技术的进步以及市场认知度的完善,会逐渐改变市场对于“技术水平”的定义。
4. 数据的质量。成功的AIOps解决方案需要高质量的数据作为支撑,但当下离散的IT系统和数据信息孤岛让数据分析结果产生负面的影响,使得治理效果并不十分令用户满意。
5. 基于复杂项目交付的定制工作。国内企业需要大规模、端到端、基于企业内部的部署,需要大量定制和整合的工作,对于供应商而言是极大的挑战。
6. 中国企业的IT堆栈。随着国家政策的推进,企业面临本土化转型的挑战,很多三方工具(由国外引入)并不是全都能很好的支持本土AIOps平台。
擎创科技,作为国内首批智能运维领域的解决方案提供商,将持续锚定赛道,用心服务用户,不断根据落地反馈来优化升级解决方案,助力客户完成从传统运维到智能运维的转变,也希望真正的智慧运营能够早日到来。
关于AIOps智能和aiops产品的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
AIOps智能的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于aiops产品、AIOps智能的信息别忘了在本站进行查找喔。
暂时没有评论,来抢沙发吧~