百度aiops故障定位(星越L百度地图定位故障)

来源网友投稿 989 2023-01-12

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈百度aiops故障定位,以及星越L百度地图定位故障对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享百度aiops故障定位的知识,其中也会对星越L百度地图定位故障进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

AIOps是什么?

AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。

传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。

经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。

Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。

相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。

通常,AIOps智能运维系统包含这几个功能模块:

AIOps具体是如何落地的?

AIOps如何落地百度aiops故障定位,还是以具体案例来说比较容易理解。就拿擎创为北京农村商业银行做的项目来说。

项目背景:

近年来数字化转型的步伐愈发变快,随着北京农村商业银行业务规模的扩增以及业务形式的电子化加速,贯穿业务、市场、系统、应用、数据库、中间件、网络、安全等多方面的数据量迅速叠加堆积。然而,这些对于市场而言极具价值的巨量化数据并不集中,它们分散在银行的各中心服务器或设备之中,这使得银行的数据运维工作量越来越大,尤其是在日志的统一管理、监控、信息挖掘等方面极为明显。因此,北京农村商业银行对于信息技术提升和数据管理加强的需求日益加深。

根据监管部门对银行数据治理的相关指引以及中国银监会《商业银行信息科技风险管理指引》(银监发〔2009〕19号)中针对日志文件完整性、存留周期的相关要求,北京农村商业银行最终选择擎创科技助力其完善智能运维建设,保障其业务的平稳高效运行。


解决方案:

根据北京农村商业银行的需求以及现状,擎创科技通过以下手段为其建设运维大数据平台。

通过现分布式高可用,支持横向扩展,随着业务需要随时扩容平台节点百度aiops故障定位

通过高效数据采集手段,实现对现有IT环境的实时数据采集,打破各个孤立运维工具中的数据孤岛百度aiops故障定位

对所有运维数据进行集中高效的存储、查询及可视化展示百度aiops故障定位

支持结构化、非结构化的数据采集支撑;

内置AI智能日志分析引擎,实现日志异常检测、日志异常定位并辅助故障定位。

平台架构图如下:


创新点:

北京农村商业银行在运维大数据平台项目的建设中,采用流批一体的处理技术、流式窗口聚合方式,实现百度aiops故障定位了实时采集、秒级处理、秒级查询,为运维人员提供高效的数据查询手段,为应用人员实现交易数据与日志的深度结合;

采用智能算法判断、故障根因定位,为运维人员提供便捷数据分析工具。充分挖掘了北京农村商业银行的运维数据价值、提升了运维管理水平、提高了运维效率。


建设成效:

建设日志治理平台和大数据平台,实现日志数据统一集中管理、KPI动态异常检测、日志智能聚类等功能。

日志治理+大数据平台(算法),当前日增日志6TB,设计容量10TB,热数据保存30天、冷数据保存3个月,大数据平台日志存档一年、指标类数据两年;

最高峰每秒处理日志500万条日志,其中最高按单笔业务交易日志行数达3000+行,经采集、数据提取、数据合并、数据丰富等数据处理后延时小于1s。


总结:

随着运维大数据平台的建设完成,北京农村商业银行实现了对各类运维日志数据的统一管理,能够对日志进行集中查询、聚类分析、快速分析、精细化分析等操作,结合监控告警的智能化处理,可以做到事前智能预警、事后快速定位故障并分析,进一步提升了银行数据中心的运维管理水平。

相比传统运维工具,AIOps的优势在哪里?

作为一种将算法集成到工具里的新型运维方式,AIOps 可以帮助企业最大程度地简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。

有了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

对 IT 运维人员而言,当一条告警被确认的时候,不但意味着你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。

AIOps对比传统运维工具的优势?

当前,随着企业数字业务的快速发展和业务量的攀升,企业信息系统架构的升级变迁,以及企业多套业务系统的在线运营,各类监控组件和应用系统间的关系错综复杂,系统运维的难度也急剧增加,且面临着巨大挑战。

在传统运维方式下,数据规模大且离散,数据治理和全面分析能力薄弱且依赖于经验和规则,运维十分被动,解决问题效率非常低下,运维的实用性大打折扣,难以满足当前主动运营的要求。

具体来说有以下几点:

发现问题难:企业在经年累月中布局了诸多监控工具,但是监控手段阈值的设定单一,且一般都是静态阈值,而指标和告警的异常却是多样化的,这样就会造成大量的误报漏报现象。此外,目前绝大多数的监控工具,缺乏趋势预测能力,使得运维局面非常被动,导致发现问题十分困难。

根因定位难:发现问题时一般都是对问题进行定性分析,可能了解到某一告警对应的指标波动是值得关注的,但是并不能因此确定造成这种现象具体根因。而且目前的监控工具,大多缺乏综合根因定界及定位分析的手段,即便对监控进行了集中管理,也难以通过单纯的几种指标进行根因定位。

数据治理难:当数字化建设进行到一定程度的时候,被管理对象的数据量相应的也是水涨船高,数据数量大、类别多且非常分散,很难通过某一指标体系来衡量系统的健康度,也没有一个统一的视角去判断数据质量的好坏优劣。

运营分析难:现有的大多数基础监控工具,多数都是从自己的管理阈例如系统管理、网络管理出发看待问题,缺乏端到端的分析能力,没办法以业务视角从综合运营分析的角度,去看待多样化指标对系统的影响。

而智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。

智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,对这种趋势不太清晰,借用著名作家威廉吉布森的话,“未来已来,只是分布不均。”

相比传统运维工具,AIOps的优势在哪里

智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

关于百度aiops故障定位和星越L百度地图定位故障的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 百度aiops故障定位的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于星越L百度地图定位故障、百度aiops故障定位的信息别忘了在本站进行查找喔。
上一篇:大数据运维平台 开源方式(开源大数据管理平台)
下一篇:智能锁厂家坤坤告诉你智能锁加盟需考虑的五个条件
相关文章

 发表评论

暂时没有评论,来抢沙发吧~