大数据运维平台部署图表(大数据运维平台部署图表模板)

来源网友投稿 858 2023-01-11

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈大数据运维平台部署图表,以及大数据运维平台部署图表模板对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享大数据运维平台部署图表的知识,其中也会对大数据运维平台部署图表模板进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据图表怎么做

如下:

工具/原料:机械革命S3 Pro、Windows10、Excel2019

1、打开表格

打开Excel,输入数据,创建表格。

2、插入图表

选中整个表格,点击菜单栏上”插入-推荐的图表“。

3、选择图表类型

点击所有图表,选择柱形图。

4、修改标题

点击图表标题,修改图表标题,数据分析图表制作完成。

如何创建一个大数据平台

所谓的大数据平台不是独立存在的,比如百度是依赖搜索引擎获得大数据并开展业务的,阿里是通过电子商务交易获得大数据并开展业务的,腾讯是通过社交获得大数据并开始业务的,所以说大数据平台不是独立存在的,重点是如何搜集和沉淀数据,如何分析数据并挖掘数据的价值。
我可能还不够资格回答这个问题,没有经历过一个公司大数据平台从无到有到复杂的过程。不过说说看法吧,也算是梳理一下想法找找喷。
这是个需求驱动的过程。
曾经听过spotify的分享,印象很深的是,他们分享说,他们的hadoop集群第一次故障是因为,机器放在靠窗的地方,太阳晒了当机了(笑)。从简单的没有机房放在自家窗前的集群到一直到现在复杂的数据平台,这是一个不断演进的过程。
对小公司来说,大概自己找一两台机器架个集群算算,也算是大数据平台了。在初创阶段,数据量会很小,不需要多大的规模。这时候组件选择也很随意,Hadoop一套,任务调度用脚本或者轻量的框架比如luigi之类的,数据分析可能hive还不如导入RMDB快。监控和部署也许都没时间整理,用脚本或者轻量的监控,大约是没有ganglia、nagios,puppet什么的。这个阶段也许算是技术积累,用传统手段还是真大数据平台都是两可的事情,但是为了今后的扩展性,这时候上Hadoop也许是不错的选择。
当进入高速发展期,也许扩容会跟不上计划,不少公司可能会迁移平台到云上,比如AWS阿里云什么的。小规模高速发展的平台,这种方式应该是经济实惠的,省了运维和管理的成本,扩容比较省心。要解决的是选择平台本身提供的服务,计算成本,打通数据出入的通道。整个数据平台本身如果走这条路,可能就已经基本成型了。走这条路的比较有名的应该是netflix。
也有一个阶段,你发现云服务的费用太高,虽然省了你很多事,但是花钱嗖嗖的。几个老板一合计,再玩下去下个月工资发布出来了。然后无奈之下公司开始往私有集群迁移。这时候你大概需要一群靠谱的运维,帮你监管机器,之前两三台机器登录上去看看状态换个磁盘什么的也许就不可能了,你面对的是成百上千台主机,有些关键服务必须保证稳定,有些是数据节点,磁盘三天两头损耗,网络可能被压得不堪重负。你需要一个靠谱的人设计网络布局,设计运维规范,架设监控,值班团队走起7*24小时随时准备出台。然后上面再有平台组真的大数据平台走起。
然后是选型,如果有技术实力,可以直接用社区的一整套,自己管起来,监控部署什么的自己走起。这个阶段部署监控和用户管理什么的都不可能像两三个节点那样人肉搞了,配置管理,部署管理都需要专门的平台和组件;定期Review用户的作业和使用情况,决定是否扩容,清理数据等等。否则等机器和业务进一步增加,团队可能会死的很惨,疲于奔命,每天事故不断,进入恶性循环。
当然有金钱实力的大户可以找Cloudera,Hortonworks,国内可以找华为星环,会省不少事,适合非互联网土豪。当然互联网公司也有用这些东西的,比如Ebay。
接下去你可能需要一些重量的组件帮你做一些事情。
比如你的数据接入,之前可能找个定时脚本或者爬log发包找个服务器接收写入HDFS,现在可能不行了,这些大概没有高性能,没有异常保障,你需要更强壮的解决方案,比如Flume之类的。
你的业务不断壮大,老板需要看的报表越来越多,需要训练的数据也需要清洗,你就需要任务调度,比如oozie或者azkaban之类的,这些系统帮你管理关键任务的调度和监控。
数据分析人员的数据大概可能渐渐从RDBMS搬迁到集群了,因为传统数据库已经完全hold不住了,但他们不会写代码,所以你上马了Hive。然后很多用户用了Hive觉得太慢,你就又上马交互分析系统,比如Presto,Impala或者SparkSQL。
你的数据科学家需要写ML代码,他们跟你说你需要Mahout或者Spark MLLib,于是你也部署了这些。
至此可能数据平台已经是工程师的日常工作场所了,大多数业务都会迁移过来。这时候你可能面临很多不同的问题。
比如各个业务线数据各种数据表多的一塌糊涂,不管是你还是写数据的人大概都不知道数据从哪儿来,接下去到哪儿去。你就自己搞了一套元数据管理的系统。
你分析性能,发现你们的数据都是上百Column,各种复杂的Query,裸存的Text格式即便压缩了也还是慢的要死,于是你主推用户都使用列存,Parquet,ORC之类的。
又或者你发现你们的ETL很长,中间生成好多临时数据,于是你下狠心把pipeline改写成Spark了。
再接下来也许你会想到花时间去维护一个门户,把这些零散的组件都整合到一起,提供统一的用户体验,比如一键就能把数据从数据库chua一下拉到HDFS导入Hive,也能一键就chua一下再搞回去;点几下就能设定一个定时任务,每天跑了给老板自动推送报表;或者点一下就能起一个Storm的topology;或者界面上写几个Query就能查询Hbase的数据。这时候你的数据平台算是成型了。
当然,磕磕碰碰免不了。每天你都有新的问题和挑战,否则你就要失业了不是?
你发现社区不断在解决你遇到过的问题,于是你们架构师每天分出很多时间去看社区的进展,有了什么新工具,有什么公司发布了什么项目解决了什么问题,兴许你就能用上。
上了这些乱七八糟的东西,你以为就安生了?Hadoop平台的一个大特点就是坑多。尤其是新做的功能新起的项目。对于平台组的人,老板如果知道这是天然坑多的平台,那他也许会很高兴,因为跟进社区,帮忙修bug,一起互动其实是很提升公司影响力的实情。当然如果老板不理解,你就自求多福吧,招几个老司机,出了问题能马上带路才是正道。当然团队的技术积累不能不跟上,因为数据平台还是乱世,三天不跟进你就不知道世界是什么样了。任何一个新技术,都是坑啊坑啊修啊修啊才完善的。如果是关键业务换技术,那需要小心再小心,技术主管也要有足够的积累,能够驾驭,知道收益和风险。

大数据运维的主要工作内容是什么?

大数据相关工作岗位很多,有大数据分析师、大数据挖掘算法工程师、大数据研发工程师、数据产品经理、大数据可视化工程师、大数据爬虫工程师、大数据运营专员、大数据架构师、大数据专家、大数据总监、大数据研究员、大数据科学家等等
数据分析师:
工作内容:
a.临时取数分析,比如双11大促活动分析;产品大数据运维平台部署图表的流量转化情况、产品流程优化分析,等等;
b.报表需求分析--比如企业常见的日报、周报、月报、季报、年报、产品报表、流量转化报表、经营分析报表、KPI报表等等;
c.业务专题分析:
精准营销分析(用户画像分析、营销对象分析、营销策略分析、营销效果分析);
风控分析(策略分析,反欺诈分析,信用状况分析);
市场研究分析(行业分析、竞品分析、市场分析、价格分析、渠道分析、决策分析等等);
工具和技能:
工具: R、Python、SAS、SPSS、Spark、X-Mind、Excel、PPT
技能:需掌握SQL数据库、概率统计、常用的算法模型(分类、聚类、关联、预测等,每一类模型的一两种最典型的算法)、分析报告的撰写、商业的敏感性等等;
数据挖掘工程师:
工作内容:
a.用户基础研究:用户生命周期刻画(进入、成长、成熟、衰退、流失)、用户细分模型、用户价值模型、用户活跃度模型、用户意愿度识别模型、用户偏好识别模型、用户流失预警模型、用户激活模型等
b.个性化推荐算法:基于协同过滤(USERBASE/ITEMBASE)的推荐,基于内容推荐,基于关联规则Apriot算法推荐,基于热门地区、季节、商品、人群的推荐等
c.风控模型:恶意注册模型、异地识别模型、欺诈识别模型、高危会员模型、
电商领域(炒信模型、刷单模型、职业差评师模型、虚假发货模型、反欺诈模型)
金融领域(欺诈评分模型、征信评分模型、催收模型、虚假账单识别模型等)
d.产品知识库:产品聚类分类模型、产品质量评分模型、违禁品识别模型、假货识别模型等
e.文本挖掘、语义识别、图像识别,等等
工具和技能:
工具: R、Python、SAS、SPSS、Spark、Mlib等等
技能:需掌握SQL数据库、概率统计、机器学习算法原理(分类、聚类、关联、预测、神经网络等)、模型评估、模型部署、模型监控;
数据产品经理:
工作内容:
a.大数据平台建设,让获取数据、用数据变得轻而易举;构建完善的指标体系,实现对业务的全流程监控、提高决策效率、降低运营成本、提升营收水平;
b.数据需求分析,形成数据产品,对内提升效率、控制成本,对外增加创收,最终实现数据价值变现;
c.典型的大数据产品:大数据分析平台、个性化推荐系统、精准营销系统、广告系统、征信评分系统(如芝麻评分)、会员数据服务系统(如数据纵横),等等;
工具和技能:
工具: 除大数据运维平台部署图表了掌握数据分析工具,还需要掌握 像 原型设计工具Auxe、画结构流程的X-Mind、visio、Excel、PPT等
技能:需掌握SQL数据库、产品设计,同时,熟悉常用的数据产品框架
数据研发工程师:
工作内容:
a.大数据采集、日志爬虫、数据上报等数据获取工作
b.大数据清洗、转换、计算、存储、展现等工作
c.大数据应用开发、可视化开发、报表开发等
工具和技能:
工具:hadoop、hbase、hive、kafaka、sqoop、java、python等
技能:需掌握数据库、日志采集方法、分布式计算、实时计算等技术

大数据运维工程师的具体职责描述

大数据运维工程师需要负责公司大数据平台大数据运维平台部署图表的运维管理工作,集群容量规划、扩容及性能优化。下面是我为您精心整理的大数据运维工程师的具体职责描述。

大数据运维工程师的具体职责描述1

职责大数据运维平台部署图表

1、负责数据平台的运维管理工作(部署、监控、优化、故障处理);

2、负责Hadoop/Spark/Flink/Elasticsearch/Kafka等系统的架构审核、容量规划、成本优化;

3、负责大数据平台的用户管理、权限分配、资源分配;

4、参与数据挖掘、机器学习的平台的设计、并给出可执行的运维方案;

5、参与数据平台的相关工具开发(包括自动化部署、监控、ETL等);

6、深入理解数据平台架构,发现并解决故障隐患及性能瓶颈;

7、ETL工具、调度工具、关系型数据库的运维。

任职资格大数据运维平台部署图表

1、本科以上学历,计算机软件相关专业;

2、1年以上大数据相关组件运维经验(hadoop/yarn/hbase/hive/spark/kafka等),1年以上的CDH或HDP维护经验,3年以上系统运维相关经验;

3、深入理解Linux系统,能独立部署开源软件,熟练掌握一门以上脚本语言(shell/perl/python等),熟悉python开发语言优先;

4、逻辑思维能力强,做事有条理,责任心强,工作积极主动,执行力强,有良好的团队协作意识。

大数据运维工程师的具体职责描述2

职责

1. 负责大数据ETL系统,运维及保障服务稳定可用;

2. 负责数据采集交换方案以及联调测试;

3. 负责采集交换任务的评审和上线;

4. 负责及时排除ETL流程故障,形成知识库,完善运维文档;

5. 负责监控和优化ETL的性能,持续性地提出改进自动化运维平台建议

技能要求

1. 计算机科学或相关专业本科及以上学历;

2. 熟悉Linux系统,熟练编写shell/perl/python一种或多种脚本语言;

3. 熟悉Hive、Hadoop、MapReduce集群原理,有hadoop大数据平台运维经验者优先;

4. 熟悉数据库的性能优化、SQL调优,有相应经验;

5. 抗压能力强,有强烈的责任心,良好的沟通能力、学习能力及团队合作能力。

大数据运维工程师的具体职责描述3

职责:

1、负责分布式大数据平台产品的运维和运维开发,保证其高可用和稳定性;

2、负责大数据系统架构的可运维性设计、容量规划、服务监控,持续优化服务架构、集群性能;

3、通过技术手段控制和优化成本,通过自动化工具及流程提升大数据平台运维效率;

4、为项目开发人员提供大数据技术指导及解决大数据平台应用中遇到的技术难题;

任职资格:

1、三年以上大数据运维相关工作经验,有大型互联网公司工作经验者优先,全日制本科及以上学历;

2、熟练掌握至少一门开发语言,有Java或Python语言开发经验优先;

3、精通Hadoop生态及高性能缓存相关的各种工具并有实战经验,包括但不限于Hadoop、HBase、Hive、Presto、Kafka、Spark、Yarn、Flink、Logstash、Flume、ClickHouse等;

4、熟悉Mysql等常用关系数据库,熟练编写SQL语句,有分布式nosql数据库应用、性能调优经验优先;

5、熟悉Linux环境,能够熟悉使用shell脚本;

6、对大数据技术有强烈兴趣,有志于往大数据方向深层次发展;

7、具有很强的责任心、执行力、服务意识、学习能力和抗压能力;

8、具备较好的沟通能力、主动性及责任感。

大数据运维工程师的具体职责描述4

职责:

1、负责大数据集群的日常维护、监控、异常处理等工作,保障集群稳定运行;

2、负责大数据批处理管理以及运维;

3、负责大数据集群的用户管理、权限管理、资源管理、性能优化等;

4、深入理解数据平台架构,发现并解决重大故障及性能瓶颈,打造一流的数据平台;

5、跟进大数据前沿技术,不断优化数据集群;

6、有华为大数据平台运维经验优先;

岗位要求:

1、1年以上大数据运维或开发经验;

2、有良好的计算机和网络基础,熟悉linux文件系统、内核、性能调优,TCP/IP、HTTP等协议;

3、熟悉大数据生态,有相关(HDFS、Hive、Hbase、Sqoop、Spark、Flume、Zookeeper、ES、Kafka)的运维及开发经验;

4、熟练使用shell、python等脚本语言开发相关运维管理工具;

5、良好的文档撰写习惯;

大数据运维工程师的具体职责描述5

   职责:

1、负责公司内部及项目中大数据集群的构建,任务调度、监控预警,持续完善大数据平台,保证稳定性、安全性;

2、负责集群容量规划、扩容、集群性能优化及日常巡检和应急值守,参与大数据基础环境的架构设计与改进;

3、深入研究大数据业务相关运维技术,探索新的运维技术及发展方向。

任职要求:

1、熟悉Linux基础命令操作,能够独立编写Shell脚本开展日常服务器的运维;

2、熟悉Hadoop生态圈Hadoop、Kafka、Zookeeper、Hbase、Spark的安装与调优;

3、熟悉软硬件设备,网络原理,有丰富的大数据平台部署,性能优化和运维经验;

4、工作认真负责,有较强的学习能力,动手能力和分析解决问题的能力;

5、能够利用各种开源监控工具、运维工具,HA、负载均衡软件完成工作任务;

6、熟悉JVM虚拟机调优;

大数据运维工程师的基本职责

大数据运维工程师需要处理公司大数据平台各类异常和故障,确保系统平台的稳定运行。下面是我为您精心整理的大数据运维工程师的基本职责。

大数据运维工程师的基本职责1

职责:

1、技术保障各底层支撑系统的可靠性与稳定性;

2、负责车辆网平台的运行监控的解决方案编制、实施与二次功能开发;

3、负责技术文档手册编写,更新,经验总结沉淀,培训分享;

4、负责对新技术和方案进行调研,评估和引进,用技术去提升运维生产效率

任职资格:

1、熟悉常见的应用服务部署和调优(Nginx、MySQL、Redis、MongoDB、ELK,Hadoop等),熟悉高可用集群、负载均衡集群的规划与搭建;

2、熟练使用Linux、TCP/IP网络协议栈,了解常用的Troubleshooting手段和常见性能指标

3、具有车联网平台运维的经验,精于容量规划、架构设计、性能优化;

4、熟悉主流PaaS云产品的使用,具有运维平台开发经验者、参与过开源产品的开发者优先;

5、优秀的沟通能力,出色的学习与钻研能力,良好的问题分析与解决能力;

6、对行业技术敏感度高且细致,善于思考,乐于发现,对解决具有挑战性问题充满激情。

   大数据运维工程师的基本职责2

职责:

1、负责维护服务器的运行,包括巡检、故障排除、数据备份等业务,保证服务器高质量、高效率运行状态;

2、负责服务器漏洞整改及补丁升级;

3、负责hadoop运维相关工作;

4、负责大数据平台的日常部署、升级、扩容、迁移;

5、负责高并发,大存储和实时流的Hadoop/spark大数据平台规划,运维,监控和优化工作。

任职资格:

1、2年左右服务器运维经验;

2、对linux基础运维命令熟悉,shell,python至少精通一种,如会scala语言可优先考虑;

3、熟悉Linux的维护和管理,熟悉bat及Shell脚本开发,能看懂Python/Scala优先;

4、做过大规模hadoop集群优先;

5、大数据项目:包括不限于hadoop、hive、kafka、hbase、spark、Kudu、Impala等大数据生态的平台搭建,监控,运维,调优、生产环境hadoop集群trouble shooting 、hadoop版本升级管理及优化支持。

大数据运维工程师的基本职责3

职责:

1、负责Hadoop平台搭建,运维,管理,故障处理。

2、负责保障大数据平台的高效运转、提升系统稳定性和安全性。

3、对平台的Hadoop,Hbase,Kafka,Hive等进行优化。

4、建立Hadoop集群管理和维护规范,包括版本管理和变更记录等。

岗位要求:

1、有丰富的Hadoop生态系统的运维经验,了解Hadoop、Storm、Spark、Kafka这些组件的原理,具备部署、实施、维护hadoop 及相关组件的能力;

2、至少精通 Perl/Python/Shell脚本语言中的一种;

3、掌握Linux操作系统的配置,管理、优化以及各种常用命令,能够独立排查及解决操作系统层的各类问题;

4、分析问题能力优秀,善于从各种系统、应用日志中寻找出问题的原因。

5、有独立分析问题和解决问题的能力,能出差。

   大数据运维工程师的基本职责4

职责:

1.负责Hadoop、spark、hbase、oozie、hive等平台运营和优化工作,保障平台服务运行稳定、高效。

2.负责大数据方案架构及方案落地;

3.开发Hadoop大数据管理平台与监控建设;

3.负责hadoop平台部署、维护;生产问题、告警、故障处理及服务器维护、日常值班;

4.负责集群网络架构、机器管理等。

任职资格:

1. 全日制本科以上学历,三年以上后台系统运营工作经验;

2. 熟悉hadoop原理,具有Hadoop平台应用及管理经验,熟悉hadoop、hive、spark、hbase、oozie、druid、kylin、flink等开源项目及部署、维护、调优;

3. 熟悉linux操作系统及调优;熟悉sql编程,熟悉Shell/Python/Java/Perl语言的一种或多种,有开发经验优先, 熟悉nagios,cacti,ganglia,zabbix,zenoss优先;

4. 对大数据和自动化运维开发有浓厚兴趣,有大规模hadoop运维经验者优先;有hadoop/hbase/spark/hive 开发经验者优先。

   大数据运维工程师的基本职责5

职责:

1. 负责大数据平台的稳定性和性能优化;

2. 负责大数据项目的运维工作;

3. 针对业务需求制定统一的运维解决方案;

4. 完善自动监控报警系统,对业务层面关键指标进行监控与报警通知;

任职要求:

1、熟练掌握hadoop平台搭建、维护,有平台优化经验;

2、熟悉HDFS、Hive、Spark、HBbase、Kafka、Flume等组件的原理,有阅读源码能力者优先;

3、熟悉腾讯云产品,有腾讯云EMR使用经验者优先考虑;

关于大数据运维平台部署图表和大数据运维平台部署图表模板的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 大数据运维平台部署图表的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据运维平台部署图表模板、大数据运维平台部署图表的信息别忘了在本站进行查找喔。
上一篇:智能锁排名销量分析 智能门锁品牌二十大排名
下一篇:百度的aiops(百度的英文)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~