大数据运维平台产品(大数据运营平台)

来源网友投稿 1405 2023-01-11

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈大数据运维平台产品,以及大数据运营平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享大数据运维平台产品的知识,其中也会对大数据运营平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据产品有哪些?

1、Disco
Disco最初由诺基亚开发,这是一种分布式计算框架,与Hadoop一样,它也基于MapReduce。它包括一种分布式文件系统以及支持数十亿个键和值的数据库。
支持的操作系统:Linux和OSX。
2、HPCC
作为Hadoop之外的一种选择,HPCC这种大数据平台承诺速度非常快,扩展性超强。除了免费社区版外,HPCCSystems还提供收费的企业版、收费模块、培训、咨询及其他服务。
支持的操作系统:Linux。
3、Lumify
Lumify归Altamira科技公司(以国家安全技术而闻名)所有,这是一种开源大数据整合、分析和可视化平台。你只要在Try、Lumify、io试一下演示版,就能看看它的实际效果。
支持的操作系统:Linux。
4、Pandas
Pandas项目包括基于Python编程语言的数据结构和数据分析工具。它让企业组织可以将Python用作R之外的一种选择,用于大数据分析项目。
支持的操作系统:Windows、Linux和OSX。
5、Storm
Storm现在是一个Apache项目,它提供了实时处理大数据的功能(不像Hadoop只提供批任务处理)。其用户包括推特、美国天气频道、WebMD、阿里巴巴、Yelp、雅虎日本、Spotify、Group、Flipboard及其他许多公司。
支持的操作系统:Linux。

大数据产品有哪些

问题一:目前大数据产品有哪些? 大数据产品的分类在狭义的范畴里,从使用用户来看,可以是企业内部用户,外部企业客户,外部个人客户等。从产品发展形态来看,从最初的报表型(如静态报表、DashBoard、即席查询),到多维分析型(OLAP等工具型数据产品),到定制服务型数据产品,再到智能型数据产品等。
普通报表型数据产品过于苍白、可视化能力有限,而多维分析型数据产品更适合于专业的数据分析师而不是业务或运营人员,使用局限性也越来越大,所为未来的趋势可能是定制服务式和智能式的数据产品。举个例子,像企业级的大数据产品商业智能正是此趋势下的衍生品,发展数年,像国外的SAP,IBM,Oracle厂商,国内的FineBI等都是代表。

问题二:国内真正的大数据分析产品有哪些 大数据产品是有很多的,例如微信的大数据平台,DD打车的平台。
基于数据挖掘技术的舆情监测系统为另外一个十分重要的产品。
很多 *** ,企业会采用。它的作用,简单来说,就是发现负面信息,收集情报,有价值信息。
实施后好处: 1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息2. 可对重点QQ群的聊天内容进行监测3. 可对重点首页进行定时截屏监测及特别页面证据保存4. 对于新闻页面可以找出其所有转载页面5. 系统可自动对信息进行分类6. 系统可追踪某个专题或某个作者的所有相关信息 7. 监测人员可对信息进行挑选,再分类8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报

问题三:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完......

问题四:国内真正的大数据分析产品有哪些 目前,大数据分析工具在金融服务、零售、医疗卫生/生命科学、执法、电信、能源与公共事业、数字媒体/精准营销、交通运输等行业都有着广泛的应用。

问题五:目前大数据在哪些行业有案例或者说应用? 1、体育行业预测
世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。其中,百度在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,百度与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,百度推出的中小企业景气指数预测,应用百度海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。ruanyun/news/ryyc/n152.aspx

问题六:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有百度、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。

问题七:国内比较好的大数据 公司有哪些 你好,说的是什么领域?数据挖掘、数据研发、数据应用方面都有佼佼者。像商业智能领域的话,国内我比较了解的帆软,一开始做报表软件,做得很好,有比较深的行业基础,后来出的FineBI商业智能软件也延续了FineReport的精华,在行业内比较有代表性,具体的,有官网,可以去了解一下。

问题八:大数据产品主要是用来做什么的 大数据产品有很多,宽泛来讲,大数据产品的作用是对已有数据源中的数据进行收集和存储,在这基础上,进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。当这整个循环体系成为一个智能化的体系,通过机器实现自动化就是一种新的模式,不管是商业的,或者是其他。
而大数据能够实现的应用,可以概括为两个方向,一是精准化定制,二是预测。
精准化定制可以是一些个性化的产品,精准营销,比如互联网推广。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。可分为决策支持类的,比如典型的商业智能产品FineBI;风险预警类的,主要用于证券、银行、投资;实时优化类的,比如实时定价。

问题九:国内真正的大数据采集产品有哪些 大数据的应用分为两类
第一类:基于自身平台的数据采集,现在的三大互联网巨头等拥有大量用户数据,通过自身数据挖掘可以完成。
第二类:基于爬虫或者类爬虫技术,帮助企业, *** 采集网络 *** 息,也就是网络信息采集系统,乐趣的“乐”,思维的“思”
其主要应用在于:舆情监测,品牌监测,价格监测,门户网站新闻采集,行业资讯采集,竞争情报获取,商业数据整合,市场研究,数据库营销等领域。

问题十:大数据分析领域有哪些分析模型 IT监控类或者IT运维流程类的产品工具上线运行一段时间之后,一年会产生十几万、甚至几十万的海量数据,包括告警数据、工单数据等IT运维大数据,需要从这些海量数据中获取更有效、更直接、更有价值的分析数据,更快速、有效的提取有意义的决策依据同样需要工具系统来满足运维大数据的IT数据挖掘、IT数据钻取需求。 RIIL Insight目前是国内首款定位于IT管理领域的大数据决策分析系统产品,通过建立多维数据分析模型进行信息提取、统计分析并提出决策依据,是IT运维管理领域的BI。系统通过IT运营管理、IT部门绩效管理、可视化项目管理、资产管理、业务关系管理、供应商软件管理等自定义维度的运行数据进行分析,可快速获取运维管理各方面的直观准确数据,诊断分析问题根源,预判数据走势,洞察全局运维动态。

求大神答:国内常见的IT运维管理平台有哪些?

天眼 Monitor可视化大数据运维平台,能够做到使Hadoop以及相关的大数据软件更容易使用,平台综合创建、管理、监视 Hadoop 集群,维度覆盖 Hadoop 整个生态圈,包括 Hive、Hbase、Sqoop、Zookeeper 及Spark等。

腾讯旗下的大数据处理套件TBDS当选2019数博会十佳大数据案例,而它究竟拥有着怎样的优势?

什么是腾讯大数据处理套件TBDS?
TBDS是基于腾讯多年海量数据处理经验,集实时/离线场景高性能分析引擎、数据开发以及数据治理功能于一体的大数据平台,其核心包含TBDS大数据基础平台、多集群多租户管控平台,数据接入,数据开发,数据治理,机器学习,智能运营平台等。



TBDS产品结构分为四部分:
平台运维和管理能力:为大数据平台基础的配置、启停、监控、告警、诊断、审计、安全管控等基础能力;高性能数据分析引擎:基于分布式存储和资源调度能力,分析引擎覆盖了在线数据计算、离线数据分析、近线数据分析、流式数据分析等大数据分析场景;



数据开发微服务:提供包含实时/离线数据集成、数据自由探索、数据开发IDE以及可视化机器学习等大数据开发工具支持,使数据开发者能高效进行大数据开发;数据治理微服务:提供技术/业务层面的元数据管理、数据生命周期管理、数据血缘管理、数据地图、数据质量以及数据访问审计等能力,使业务数据能得到有效组织和管理。



腾讯大数据处理套件TBDS的创新和核心优势,TBDS通过乐高架构,融合多个组件系统,构建开箱即用的大数据平台,提供拖拽式的可视化数据开发IDE及机器学习平台,可支持用户自定义功能,具有非常好的产品扩展性。为客户的大数据集成、存储、计算环节提供完整而稳定的企业级解决方案。客户能借助于TBDS快速构建中台能力,聚焦于进行企业的业务创新。

大数据运维工程师的具体职责描述

大数据运维工程师需要负责公司大数据平台的运维管理工作,集群容量规划、扩容及性能优化。下面是我为您精心整理的大数据运维工程师的具体职责描述。

大数据运维工程师的具体职责描述1

职责:

1、负责数据平台的运维管理工作(部署、监控、优化、故障处理);

2、负责Hadoop/Spark/Flink/Elasticsearch/Kafka等系统的架构审核、容量规划、成本优化;

3、负责大数据平台的用户管理、权限分配、资源分配;

4、参与数据挖掘、机器学习的平台的设计、并给出可执行的运维方案;

5、参与数据平台的相关工具开发(包括自动化部署、监控、ETL等);

6、深入理解数据平台架构,发现并解决故障隐患及性能瓶颈;

7、ETL工具、调度工具、关系型数据库的运维。

任职资格:

1、本科以上学历,计算机软件相关专业;

2、1年以上大数据相关组件运维经验(hadoop/yarn/hbase/hive/spark/kafka等),1年以上的CDH或HDP维护经验,3年以上系统运维相关经验;

3、深入理解Linux系统,能独立部署开源软件,熟练掌握一门以上脚本语言(shell/perl/python等),熟悉python开发语言优先;

4、逻辑思维能力强,做事有条理,责任心强,工作积极主动,执行力强,有良好的团队协作意识。

大数据运维工程师的具体职责描述2

职责

1. 负责大数据ETL系统,运维及保障服务稳定可用;

2. 负责数据采集交换方案以及联调测试;

3. 负责采集交换任务的评审和上线;

4. 负责及时排除ETL流程故障,形成知识库,完善运维文档;

5. 负责监控和优化ETL的性能,持续性地提出改进自动化运维平台建议

技能要求

1. 计算机科学或相关专业本科及以上学历;

2. 熟悉Linux系统,熟练编写shell/perl/python一种或多种脚本语言;

3. 熟悉Hive、Hadoop、MapReduce集群原理,有hadoop大数据平台运维经验者优先;

4. 熟悉数据库的性能优化、SQL调优,有相应经验;

5. 抗压能力强,有强烈的责任心,良好的沟通能力、学习能力及团队合作能力。

大数据运维工程师的具体职责描述3

职责:

1、负责分布式大数据平台产品的运维和运维开发,保证其高可用和稳定性;

2、负责大数据系统架构的可运维性设计、容量规划、服务监控,持续优化服务架构、集群性能;

3、通过技术手段控制和优化成本,通过自动化工具及流程提升大数据平台运维效率;

4、为项目开发人员提供大数据技术指导及解决大数据平台应用中遇到的技术难题;

任职资格:

1、三年以上大数据运维相关工作经验,有大型互联网公司工作经验者优先,全日制本科及以上学历;

2、熟练掌握至少一门开发语言,有Java或Python语言开发经验优先;

3、精通Hadoop生态及高性能缓存相关的各种工具并有实战经验,包括但不限于Hadoop、HBase、Hive、Presto、Kafka、Spark、Yarn、Flink、Logstash、Flume、ClickHouse等;

4、熟悉Mysql等常用关系数据库,熟练编写SQL语句,有分布式nosql数据库应用、性能调优经验优先;

5、熟悉Linux环境,能够熟悉使用shell脚本;

6、对大数据技术有强烈兴趣,有志于往大数据方向深层次发展;

7、具有很强的责任心、执行力、服务意识、学习能力和抗压能力;

8、具备较好的沟通能力、主动性及责任感。

大数据运维工程师的具体职责描述4

职责:

1、负责大数据集群的日常维护、监控、异常处理等工作,保障集群稳定运行;

2、负责大数据批处理管理以及运维;

3、负责大数据集群的用户管理、权限管理、资源管理、性能优化等;

4、深入理解数据平台架构,发现并解决重大故障及性能瓶颈,打造一流的数据平台;

5、跟进大数据前沿技术,不断优化数据集群;

6、有华为大数据平台运维经验优先;

岗位要求:

1、1年以上大数据运维或开发经验;

2、有良好的计算机和网络基础,熟悉linux文件系统、内核、性能调优,TCP/IP、HTTP等协议;

3、熟悉大数据生态,有相关(HDFS、Hive、Hbase、Sqoop、Spark、Flume、Zookeeper、ES、Kafka)的运维及开发经验;

4、熟练使用shell、python等脚本语言开发相关运维管理工具;

5、良好的文档撰写习惯;

大数据运维工程师的具体职责描述5

   职责:

1、负责公司内部及项目中大数据集群的构建,任务调度、监控预警,持续完善大数据平台,保证稳定性、安全性;

2、负责集群容量规划、扩容、集群性能优化及日常巡检和应急值守,参与大数据基础环境的架构设计与改进;

3、深入研究大数据业务相关运维技术,探索新的运维技术及发展方向。

任职要求:

1、熟悉Linux基础命令操作,能够独立编写Shell脚本开展日常服务器的运维;

2、熟悉Hadoop生态圈Hadoop、Kafka、Zookeeper、Hbase、Spark的安装与调优;

3、熟悉软硬件设备,网络原理,有丰富的大数据平台部署,性能优化和运维经验;

4、工作认真负责,有较强的学习能力,动手能力和分析解决问题的能力;

5、能够利用各种开源监控工具、运维工具,HA、负载均衡软件完成工作任务;

6、熟悉JVM虚拟机调优;

在灾备和运维方面比较出众的大数据解决方案有哪些?

为了有效减轻和抵御自然或其他突发灾难对企业生存和发展造成破坏大数据运维平台产品,业界曾经要求区分业务连贯性(Business Continuity)和灾难恢复(Disaster Recovery)大数据运维平台产品,但随着技术的发展和研究不断深入,这两个概念已经逐渐融合,相关措施一般统为业务连贯性计划(BCP,Business Continuity Plan),国内则习惯性称之为“灾备计划”。


灾备计划的实施中,核心是数据。当前,企业的发展和成功越来越依赖于对数据信息的掌握和管理,数据已经成为企业最重要的财富;灾备系统的部署也正是为了在发生灾难的时候实现数据的恢复并维持相关应用。然而,在目前的技术条件下,建立完善的灾备系统还需要解决数据处理和安全中的一些让人头疼的问题。


灾备系统的数据处理和安全问题

数据量急速增长


根据IDC 2008年3月的报告,2007年各种新增数据的总量(281 ExaByte)较上年增长了约75%,已经超过所有可用存储介质总容量(264 ExaByte)约6%,预计2011年数据总量将达到2006年的10倍。在企业中,除了一般应用的数据急速增长,各种新兴的信息化技术(如ERP、CRM、电子商务等等)在提高效率的同时,也同样会产生大量数据。


急速增长的数据量给灾备系统带来的最直观的问题是存储空间不足,需要购买更多的存储介质(磁带或磁盘)。随着系统总存储容量的增加,除了购买介质本身的支出外,设备部署空间、降温、电能消耗等等附带需求也随之迅速增长。


另一方面,数据量增长也给系统的处理能力带来了巨大压力。与存储介质不同,系统的处理能力(如CPU、I/O总线等)一般较难扩展,通常只能通过硬件整体升级完成,如果不能通过技术手段有效平抑数据量增长对系统处理能力的压力,系统可靠性将面临频繁硬件升级的严峻挑战。同时,对系统的投资也不能得到充分利用。


此外,灾备系统通常都需要异地部署。数据量的增加要求远程数据传输具有更高的带宽;由于传输带宽的限制,传输时间的延长可能会降低系统运行效率,甚至无法及时完成异地数据传输,造成灾备系统不能发挥功效。

保护敏感数据


完整的信息安全保护需要遵循AIC三原则,即对保护数据需要同时关注可用性(Availability)、完整性(Integrity)和机密性(Confidentiality)等三个关键特性。尽管不同的应用场景会有不同的要求,但在系统的设计时必须对这三个特性都予以足够的重视,而目前国内的灾备系统往往仅将视线主要集中在可用性上,对完整性和机密性都缺乏必要的关注。


部署灾备系统是为了能在灾难发生后及时恢复应用,保证相关业务的有效运行。因此数据有效性是系统设计中首要关注的内容,而与此同时,随着信息技术的应用越来越广泛,敏感数据被泄漏甚至篡改的风险也越来越大,一旦发生意外,企业将在激烈的市场竞争中受到沉重,甚至毁灭性的打击。


2. 现有解决方案及不足


为了应对上述问题,存储业界分别提出了相应的解决方案:数据缩减技术可以有效减少备份数据的总量;对敏感数据的严密保护可通过采用加密技术实现。


目前广泛应用的数据缩减技术主要有重复数据删除(Data De-duplication)和数据压缩(Data Compression)。重复数据删除技术通过删除存储过程中重复出现的数据块来降低数据总量,数据缩减比通常可达10:1到20:1,即应用重复数据删除技术后的总据量将减少到原始数据量的10%到5%;数据压缩技术通过对数据重新编码来降低其冗余度,从而实现数据量的减少,一般数据的压缩比约为2:1,即数据可被压缩到原大小的一半左右。这两种技术具有不同层面的针对性,并能够结合起来使用,从而实现更高的数据缩减比例。需要注意的是,如果同时应用重复数据删除和数据压缩技术,通常会先应用数据删除技术,然后再使用数据压缩技术,从而尽量减少对系统处理能力的占用。


为了对存储系统的数据进行有效保护,业界于今年初正式通过了IEEE 1619/1619.1存储安全标准。 IEEE1619采用一种新的加密算法模式XTS-AES,有效地解决了块导向存储设备(例如,磁盘驱动器)上的数据加密问题; IEEE 1619.1则主要是针对大的磁盘驱动器,可以采用CBC、GCM等多种AES加密和验证算法模式;其他如密钥管理等后续相关标准的制定也正在有序进行。


然而,尽管有这些方案能够分别应对灾备系统面临的大数据量和安全性问题,在实际的系统设计和部署中仍然存在一些麻烦,分散的技术实现会带来资源占用过多、系统运行效率低、复杂度太高、可靠性低等等各种问题,业界迫切地需要一种新的高集成度的总体解决方案,来全面解决所有的这些问题。


更为突出的问题是,数据保护所引入的加密处理将从根本上限制数据缩减技术的应用,这几种技术之间存在着根本的矛盾:重复数据删除和数据压缩技术的基础是大量数据中存在相似或相同的特性,而加密处理后数据中的相似或相同都将被完全破坏。


3. Hifn Express DR融合技术方案介绍


要想充分利用上述数据缩减和安全保护技术,构建完善的灾备系统,就必须仔细协调这几种处理。作为存储和网络创新的推动者,Hifn凭借对数据缩减和加密处理技术的深刻理解,以及对灾备系统存储应用的准确把握,提出了全新的Hifn Express DR解决方案,如图所示。


基于Hifn Express DR解决方案,数据将在被压缩后再提交进一步处理,以增加系统I/O带宽,从而使现有系统的硬件投资得到最大限度的利用和保护;在内部处理过程中,从I/O模块得到的源数据将首先被解压缩,然后使用特定的算法(一般使用SHA-1/2)计算出数据块的识别信息,以便进行重复数据删除处理;重复数据删除处理的元数据块将会被压缩,以进一步减少数据量。为了实现全面的数据保护,还可以对压缩后的数据块进行加密,加密算法和处理方式严格遵从IEEE 1619系列标准。整个处理过程都将由相关硬件处理单元自动完成,从而极大提高系统处理器和存储单元的工作效率。


通过对重复数据删除、数据压缩和加密技术的综合运用,基于该架构的新一代Hifn Express DR系列加速卡可以帮助客户将灾备系统的数据量减少到原始数据的5%以下,并实现数据的全面安全保护,其处理性能也将达到创纪录的1,600MB/s。

关于大数据运维平台产品和大数据运营平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 大数据运维平台产品的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据运营平台、大数据运维平台产品的信息别忘了在本站进行查找喔。
上一篇:人工智能是如何影响就业的
下一篇:智能锁有哪些便利,智能锁的便利性是什么
相关文章

 发表评论

暂时没有评论,来抢沙发吧~