睿象云智能告警平台的分派策略
772
2023-01-11
本文目录一览:
1、操作体系大数据运维平台搭建初级的挑选
操作体系一般使用开源版的RedHat、Centos或许Debian作为底层的构建渠道大数据运维平台搭建初级,要根据大数据渠道所要建立的数据剖析东西能够支撑的体系大数据运维平台搭建初级,正确的挑选操作体系的版本。
2、建立Hadoop集群
Hadoop作为一个开发和运行处理大规模数据的软件渠道,实现大数据运维平台搭建初级了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。Hadoop结构中最核心的规划是HDFS和MapReduce,HDFS是一个高度容错性的体系,合适布置在廉价的机器上,能够供给高吞吐量的数据访问,适用于那些有着超大数据集的应用程序;MapReduce是一套能够从海量的数据中提取数据最终回来成果集的编程模型。在生产实践应用中,Hadoop非常合适应用于大数据存储和大数据的剖析应用,合适服务于几千台到几万台大的服务器的集群运行,支撑PB级别的存储容量。
3、挑选数据接入和预处理东西
面临各种来源的数据,数据接入便是将这些零散的数据整合在一起,归纳起来进行剖析。数据接入首要包括文件日志的接入、数据库日志的接入、关系型数据库的接入和应用程序等的接入,数据接入常用的东西有Flume,Logstash,NDC(网易数据运河体系),sqoop等。
4、数据存储
除大数据运维平台搭建初级了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hbase,HBase是一种key/value体系,布置在HDFS上,与Hadoop一样,HBase的目标首要是依靠横向扩展,通过不断的添加廉价的商用服务器,添加计算和存储才能。同时hadoop的资源管理器Yarn,能够为上层应用供给统一的资源管理和调度,为集群在利用率、资源统一等方面带来巨大的优点。
5、挑选数据挖掘东西
Hive能够将结构化的数据映射为一张数据库表,并供给HQL的查询功能,它是建立在Hadoop之上的数据仓库根底架构,是为了削减MapReduce编写工作的批处理体系,它的出现能够让那些通晓SQL技术、可是不熟悉MapReduce、编程才能较弱和不擅长Java的用户能够在HDFS大规模数据集上很好的利用SQL言语查询、汇总、剖析数据。
6、数据的可视化以及输出API
关于处理得到的数据能够对接主流的BI体系,比如国外的Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可免费试用)等,将成果进行可视化,用于决策剖析;或许回流到线上,支撑线上业务的开展。
大数据运维工程师需要处理公司大数据平台各类异常和故障,确保系统平台的稳定运行。下面是我为您精心整理的大数据运维工程师的基本职责。
大数据运维工程师的基本职责1
职责:
1、技术保障各底层支撑系统的可靠性与稳定性;
2、负责车辆网平台的运行监控的解决方案编制、实施与二次功能开发;
3、负责技术文档手册编写,更新,经验总结沉淀,培训分享;
4、负责对新技术和方案进行调研,评估和引进,用技术去提升运维生产效率
任职资格:
1、熟悉常见的应用服务部署和调优(Nginx、MySQL、Redis、MongoDB、ELK,Hadoop等),熟悉高可用集群、负载均衡集群的规划与搭建;
2、熟练使用Linux、TCP/IP网络协议栈,了解常用的Troubleshooting手段和常见性能指标
3、具有车联网平台运维的经验,精于容量规划、架构设计、性能优化;
4、熟悉主流PaaS云产品的使用,具有运维平台开发经验者、参与过开源产品的开发者优先;
5、优秀的沟通能力,出色的学习与钻研能力,良好的问题分析与解决能力;
6、对行业技术敏感度高且细致,善于思考,乐于发现,对解决具有挑战性问题充满激情。
大数据运维工程师的基本职责2
职责:
1、负责维护服务器的运行,包括巡检、故障排除、数据备份等业务,保证服务器高质量、高效率运行状态;
2、负责服务器漏洞整改及补丁升级;
3、负责hadoop运维相关工作;
4、负责大数据平台的日常部署、升级、扩容、迁移;
5、负责高并发,大存储和实时流的Hadoop/spark大数据平台规划,运维,监控和优化工作。
任职资格:
1、2年左右服务器运维经验;
2、对linux基础运维命令熟悉,shell,python至少精通一种,如会scala语言可优先考虑;
3、熟悉Linux的维护和管理,熟悉bat及Shell脚本开发,能看懂Python/Scala优先;
4、做过大规模hadoop集群优先;
5、大数据项目:包括不限于hadoop、hive、kafka、hbase、spark、Kudu、Impala等大数据生态的平台搭建,监控,运维,调优、生产环境hadoop集群trouble shooting 、hadoop版本升级管理及优化支持。
大数据运维工程师的基本职责3
职责:
1、负责Hadoop平台搭建,运维,管理,故障处理。
2、负责保障大数据平台的高效运转、提升系统稳定性和安全性。
3、对平台的Hadoop,Hbase,Kafka,Hive等进行优化。
4、建立Hadoop集群管理和维护规范,包括版本管理和变更记录等。
岗位要求:
1、有丰富的Hadoop生态系统的运维经验,了解Hadoop、Storm、Spark、Kafka这些组件的原理,具备部署、实施、维护hadoop 及相关组件的能力;
2、至少精通 Perl/Python/Shell脚本语言中的一种;
3、掌握Linux操作系统的配置,管理、优化以及各种常用命令,能够独立排查及解决操作系统层的各类问题;
4、分析问题能力优秀,善于从各种系统、应用日志中寻找出问题的原因。
5、有独立分析问题和解决问题的能力,能出差。
大数据运维工程师的基本职责4
职责:
1.负责Hadoop、spark、hbase、oozie、hive等平台运营和优化工作,保障平台服务运行稳定、高效。
2.负责大数据方案架构及方案落地;
3.开发Hadoop大数据管理平台与监控建设;
3.负责hadoop平台部署、维护;生产问题、告警、故障处理及服务器维护、日常值班;
4.负责集群网络架构、机器管理等。
任职资格:
1. 全日制本科以上学历,三年以上后台系统运营工作经验;
2. 熟悉hadoop原理,具有Hadoop平台应用及管理经验,熟悉hadoop、hive、spark、hbase、oozie、druid、kylin、flink等开源项目及部署、维护、调优;
3. 熟悉linux操作系统及调优;熟悉sql编程,熟悉Shell/Python/Java/Perl语言的一种或多种,有开发经验优先, 熟悉nagios,cacti,ganglia,zabbix,zenoss优先;
4. 对大数据和自动化运维开发有浓厚兴趣,有大规模hadoop运维经验者优先;有hadoop/hbase/spark/hive 开发经验者优先。
大数据运维工程师的基本职责5
职责:
1. 负责大数据平台的稳定性和性能优化;
2. 负责大数据项目的运维工作;
3. 针对业务需求制定统一的运维解决方案;
4. 完善自动监控报警系统,对业务层面关键指标进行监控与报警通知;
任职要求:
1、熟练掌握hadoop平台搭建、维护,有平台优化经验;
2、熟悉HDFS、Hive、Spark、HBbase、Kafka、Flume等组件的原理,有阅读源码能力者优先;
3、熟悉腾讯云产品,有腾讯云EMR使用经验者优先考虑;
关于大数据运维平台搭建初级和大数据运维平台 开源的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 大数据运维平台搭建初级的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据运维平台 开源、大数据运维平台搭建初级的信息别忘了在本站进行查找喔。发表评论
暂时没有评论,来抢沙发吧~