嵌入式人工智能的定义与生成性人工智能之间的关系

网友投稿 822 2023-01-10

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

嵌入式人工智能的定义与生成性人工智能之间的关系

Gartner每年都要在自己的“成熟度曲线(Hype Cycles)”榜单上列举很多种新技术,值得注意的是,该公司评估了超过1,700种新兴技术,筛选出一组(大约30种)在未来五到十年内最具变革性的技术,并进行了简明的介绍。下图中列举了首次出现在这份榜单上的人工智能技术。下面是Gartner定义的2020年新兴技术成熟度曲线榜单:

2020年Gartner新兴技术“成熟度曲线(Hype Cycle)”榜单上关于人工智能技术的新内容

健康护照是一种移动应用程序,可显示一个人的相对感染风险等级以及他们是否可以进入建筑物、超市、饭店、公共场所和交通工具。中国和印度这两个早期采用者正在证明,结合使用健康护照和筛查手段,可以有效地阻止新冠肺炎的传播,同时也使人们能够自由使用公共场所和交通工具。中国的健康码被广泛用作筛查工具,以最大程度地降低新冠肺炎的传播风险。它针对用户的认定健康状况显示为彩色的二维码:红色是确诊感染了新冠肺炎的病患,黄色的二维码应该隔离,而绿色的二维码可以自由出行。健康码检查非常普遍,如果没有绿码,简直可以说是寸步难行。健康护照的早期领导者包括支付宝、Circle Pass Enterprises、Folio、Vottun和微信。

负责任的人工智能是今年“成熟度曲线(Hype Cycle)”榜上的另一个新类别,这一系列的技术的目标是通过努力减少偏差来帮助企业做出更道德、更平衡的业务决策。负责任的人工智能技术的目标是简化组织如何落实负责任的实践,以确保人工智能得到积极的开发和使用。负责任的人工智能技术最迫切的用例之一是在全球范围内识别和阻止“深度伪造(deep fakes)”生产。Gartner用用例来定义了这个技术类别,这些用例涉及提升业务和社会价值、降低风险、增加信任度和透明度以及减少偏差对人工智能的影响。作为今年新上榜的人工智能技术,负责任的人工智能技术在利用人工智能向善的方面可谓独领风骚。Gartner认为,负责任的人工智能技术还需要提高组织的可解释性、责任性、安全性、隐私性和法规遵从性。

人工智能增强开发(AI-augmented development)今年首次出现在“成熟度曲线(Hype Cycle)”榜上,其目的是加快应用程序和DevOps团队的时间周期,以便更快、更一致地创建高质量的软件。Gartner对人工智能增强开发(AI-augmented development)的定义是使用诸如机器学习(ML)、自然语言处理(NLP)以及类似的技术来加速应用程序和DevOps周期。该领域的早期领导者包括Codota、Deep Code、谷歌、Kite、Mendix、微软、OutSystems和Parasoft。

自我监督学习是今年“成熟度曲线(Hype Cycle)”榜上的新客,这是一种被定位为能够帮助组织采用监督机器学习技术的赋能技术。在Craftworks、Facebook、谷歌和微软最初进行研发的时候,自我监督学习还是只一种处于萌芽阶段的技术,旨在克服监督学习的最大缺点之一——通常需要使用大量的标记数据。Gartner预测,自我监督学习的潜在影响和好处都非常巨大,因为它可以将机器学习的适用性扩展到那些没有大型数据集可用的组织。

上一篇:智能魔镜的应用将会掀起一股智能家居的热潮
下一篇:计算机AIOps大数据管理(aiops是基于大数据)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~