睿象云智能告警平台的分派策略
798
2023-01-09
本文目录一览:
在这个数字化的大浪潮时代,相比传统IT运维,AIOps将AI赋能于IT运维,发掘运维数据价值,协助运维工作降本增效,并可实现全面的可观测性。
企业数字化转型的过程中,运维工作常常会遇到这些痛点:
监控工具用了一大堆,但各自保存在不同的地方,形成一个个数据孤岛。排查一个故障往往要到不同的服务器上翻看日志等数据,效率低下。
在确定故障根因前,无法确定派给哪个团队处置。只能按经验逐个排查,MTTR(平均排障时间)长。
根因定位依赖人的经验,缺乏智能规划手段。
而采用AIOps系统,可以对监控工具的数据、日志/告警/指标等数据进行统一采集、存储,结合总体拓扑架构构建异常检测、告警收敛、根因定位等智能化场景。迅速定位根因,大大减少MTTR。
此类的厂商国内有不少,并且已在金融为主的多个行业中得到应用。相信不久的将来,AIOps将成为运维管理软件的标配。
这是因为目前,IT运维管理面临着两难境地的巨大挑战,一方面要降低成本,另一方面其复杂度又不断攀升。主要体现在数据量巨大、数据类型繁多和数据生成速度快三个维度:
IT基础架构和应用程序产生的数据量快速增长(年增长2-3倍)
机器和人工生成的数据类型越来越多(例如指标、日志、网络数据和知识管理文档)
由于采用了云架构和其他临时性的架构,数据生成速度不断提高,IT架构内变化速率也在提高
鉴于现代企业所需的洞察力,对这三个维度进行权衡的代价将相当巨大。因此,越来越多的客户对AIOps越来越感兴趣,并想通过大数据和机器学习技术来分析服务台的有效性,以此参与到故障和问题解决流程中去。IT组织还开始在DevOps环境中探索AIOps,将其作为持续集成/持续交付(CI/CD)周期的一部分,便于在部署之前预测潜在的问题,并检测潜在的安全问题。
AIOps分析的应用超越了其最初的使用范围,而成为IT运维中事件关联和分析的最佳解决方案。
如何通过AIOps手段增加运维效能和降低运维成本,对于企业来说都是很大的挑战。而致力于智能运维AIOps领域的擎创科技,已经为国内多家银行和证券用户成功部署夏洛克AIOps平台,助力企业运维降本增效:
强大自研数据采集器:支持Linux、Windows、AIX等多种系统,可采集除日志外的性能数据、网络数据、CMDB数据等各类数据;
创新的数据流处理方式:单数据流峰值每秒采集350000 条,可处理日增数据30TB;
人工智能算法:与复旦大学运维实验室共研10+种人工智能算法,异常检测和根因定位更容易。
目前,AIOps主要用于IT运维,且在企业中日益占据主导地位,而一些成熟的组织已正在利用该技术为企业领导者提供决策支撑。企业基础设施与运维负责人应该尽早启动AIOps平台部署工作,优化当前的性能分析,并在未来两年至五年内扩展至IT服务管理和自动化领域。
发表评论
暂时没有评论,来抢沙发吧~