睿象云智能告警平台的分派策略
687
2023-01-07
本文目录一览:
AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。
传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。
经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。
Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。
相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。
通常,AIOps智能运维系统包含这几个功能模块:
作为一种将算法集成到工具里的新型运维方式,AIOps 可以帮助企业最大程度地简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。
有了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。
由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。
对 IT 运维人员而言,当一条告警被确认的时候,不但意味着你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。
智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:
运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;
业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;
运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;
业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;
由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。
确实听说有人这样担心和误会。
实际上运维aiops,AIOps平台出现并蓬勃发展的主要动力运维aiops,是因为企业的IT系统数据量越来越大运维aiops,结构也越来越复杂,靠单纯的运维工程师的经验和人工判断,很难应对层出不穷的运维问题。传统的运维监控软件,可以展示运维数据,却无法给出分析和处置建议,无法跟上排障的要求。
随着AI人工智能的应用,可以把运维数据做更好的分析,或提供疑似根因的定位、或提供异常的预警,使用AIOps系统,MTTR(平均故障排除时间)能从数小时缩短到数分钟,排障的经验也可以作为既有知识保存供运维aiops他人参考。
所以,有AIOps之后,原先一个运维工程师管理n个应用和设备;就算是设备增加到100n,可能靠一个工程师也能管得过来,而不用等比例增加到100个运维工程师。这就是技术进步的意义。
关于运维aiops和运维管理平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 运维aiops的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于运维管理平台、运维aiops的信息别忘了在本站进行查找喔。发表评论
暂时没有评论,来抢沙发吧~