睿象云智能告警平台的分派策略
834
2023-01-06
本文目录一览:
在这个数字化的大浪潮时代,相比传统IT运维,AIOps将AI赋能于IT运维,发掘运维数据价值,协助运维工作降本增效,并可实现全面的可观测性。
企业数字化转型的过程中,运维工作常常会遇到这些痛点:
监控工具用了一大堆,但各自保存在不同的地方,形成一个个数据孤岛。排查一个故障往往要到不同的服务器上翻看日志等数据,效率低下。
在确定故障根因前,无法确定派给哪个团队处置。只能按经验逐个排查,MTTR(平均排障时间)长。
根因定位依赖人的经验,缺乏智能规划手段。
而采用AIOps系统,可以对监控工具的数据、日志/告警/指标等数据进行统一采集、存储,结合总体拓扑架构构建异常检测、告警收敛、根因定位等智能化场景。迅速定位根因,大大减少MTTR。
此类的厂商国内有不少,并且已在金融为主的多个行业中得到应用。相信不久的将来,AIOps将成为运维管理软件的标配。
擎创科技为券商、银行、政府机构等都做过智能运维的成功落地案例。比如最近为某中型银行客户解决日常运维中存在的告警风暴问题。
A行主要运维痛点是告警风暴频发,系统日增告警量达5000多条。在这种情况下运维人员根本无法及时处理告警事件,系统问题更无法及时得到修复,势必会引发用户频繁投诉。A行迫切需要引入智能化的运维方案来解决横亘已久的问题,破除告警风暴难题,提高告警处理能力。
在实地了解到客户的现状和痛点后,我方咨询专家给出的方案是通过实施告警信息丰富、告警智能压缩、告警智能关联、精准推荐告警优先级等功能,帮助运维人员逐步实现少做事、做重要的事、更高效地做事等三级目标。这些核心功能,最终要依赖擎创的智能运维产品——告警辨析中心来实现。
这些功能的实现逻辑如下:
1、告警信息丰富:原始告警信息关联CMDB配置信息,做如下内容丰富;
2、告警智能压缩:利用智能算法将相同或者相似的告警进行合并压缩;
3、告警智能关联:利用智能算法将可能是同一种根因产生的告警关联在一起,方便用户迅速查找问题症结;
4、精准推荐告警优先级:智能算法推荐告警优先级,使告警级别标注更精准。
整个项目历时3个月,投产后压缩掉了82%的无效告警,并大大提高了运维人员的排障效率,客户投诉量也降低了50%。
此外,这个项目也了却了客户心中的难题。A银行使用的监控平台建设于2009年,虽然采用的是某知名国际软件厂商的产品,但是产品的架构、功能和性能已经远远无法满足当前业务需要。客户3年前就表示希望更换监控平台,但由于涉及部门过多,新监控平台建设工作迟迟无法推进。
此次智能运维项目中发现客户的指标数据采样频率和告警频率都是5分钟一次,已经无法反应系统的真实状态,且会遗漏大量有价值的数据和信息。经过项目组向客户多次汇报和反复沟通,终于推动客户下定决心升级监控平台,目前该项目已经进入UAT测试阶段。
“擎创科技将AIOps领域的行业场景做深做透,让客户可以产生真实的收入,这就是客户持续订阅的缘由。”
未来的运维势必是由运维走向运营,擎创科技将会继续提升运维数据的认知能力,打造智能运维产品中最实用的工具,构建实用工具中最智能的产品,帮助企业走上运维智能化道路。
AIOps,顾名思义是将AI赋能于IT运维管理。国际权威咨询机构Gartner在2016年的报告里首次提出AIOps的概念。
传统的IT运维工作,大多是借助监控软件查看数据,并依赖运维人员的经验进行根因定位和排障。有了AI的加持后,可以借助AI算法提前发现数据中的异常,并通过数据串联锁定可能根因,大大缩短故障处理时间、提高运维效率。
经过多年来的发展,越来越多的大中型企业投入智能运维AIOps的部署,以应对企业数字化转型带来的数据量暴增、系统架构复杂带来的运维挑战。
Gartner在其2022年的AIOps报告中也指出:Yes, There is no doubt: There is no future of IT operations that does not include AIOps. 毫无疑问,不包含AIOps的IT运维不会有未来。
相信在不久的将来,传统运维将渐渐被智能运维AIOps所替代。
通常,AIOps智能运维系统包含这几个功能模块:
擎创科技在AIOps领域多年的实践积累,赢得了不同行业客户的信赖,这其中不乏很多行业的头部客户。据业界报道,擎创科技的客户订阅复购率可以达到100%。首要原因是擎创科技确保客户的使用场景和生产运营融为一体。其次,客户不仅使用擎创科技的产品,而且还通过产品实施经验的分享和积累,调整算法模型参数,从而实现企业最佳实践。擎创科技更是连续四次被Gartner提名AIOps领域标杆服务商。
关于智能运维aiops厂商和aiops 自动化运维的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能运维aiops厂商的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于aiops 自动化运维、智能运维aiops厂商的信息别忘了在本站进行查找喔。发表评论
暂时没有评论,来抢沙发吧~