智能运维aiops的思考(aiops运维决策时间)

来源网友投稿 869 2023-01-06

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈智能运维aiops的思考,以及aiops运维决策时间对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享智能运维aiops的思考的知识,其中也会对aiops运维决策时间进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

相比传统运维工具,AIOps的优势在哪里?

作为一种将算法集成到工具里的新型运维方式,AIOps 可以帮助企业最大程度地简化运维工作,把 IT 从耗时又容易出错的流程中解放出来。

有了 AIOps,当 IT 出现故障隐患,运维人员不需要再等待系统发出故障告警,通过内置的机器学习算法以及大数据技术,就能自动发现系统的各类异常,从而实现从异常入手判断故障发生的可能性、严重性和影响,依赖机器对数据的分析结果,判断最佳的应对方案。

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

对 IT 运维人员而言,当一条告警被确认的时候,不但意味着你第一时间发现了业务故障,更意味着在故障发生的这一刻,业务已经受到了影响。而随着 AIOps 的出现,IT 部门可以通过机器学习和算法技术,事先发现 IT 系统的运行异常,提前进行故障的防范甚至规避措施,确保业务故障不出现或者少出现,这些对于 IT 和业务部门来说意义重大。

如何看待AIOps的发展

从未来发展趋势来看,ITOA、AIOps会是未来增长最快的两个方向。随着以数据为核心的运维分析出现,运维市场逐渐由ITOM演变成ITOA(IT Operations Analytics),后来又提出了智能化运维(AIOps)。尽管目前肯定还是ITOM占市场的主体,但随着企业数字化转型的快速发展,IT系统数量快速增长,还有云原生架构的应用导致系统复杂度越来越高,传统运维方式已经无法满足企业的需求,因此,借助AI技术能力实现运维智能化,提高运维效率和运维质量,成为IT运维的必然趋势。现在,IT运维的发展正处于螺旋式的上升期,根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。
不过国内AIOps的落地实践也面临着挑战:
1. 不切实际的期望。AIOps的技术还不是完全成熟,很多用户很难将智能自动化的运维与实际可实现的案例分开,认为AIOps已经能够实现智能自动化,而实际上现在距离真正的智能运维还有很长的一段路要走。
2. 有价值的案例需要实践时间。AIOps平台需要通过不断的学习观察,在一定的时间、发生频率内,才能将正常的数据范围和模式跟解决方案结合起来,以建立合适的观测模型,为后续的业务运营提供保障。
3. 市场的转变。AIOps的市场正处于不断的变化发展中,监控供应商正在向上层业务移动,AIOps平台的供应商则正在进入监控领域,而ITSM供应商却只是将AIOps的功能视为扩展其范围的一种手段,随着技术的进步以及市场认知度的完善,会逐渐改变市场对于“技术水平”的定义。
4. 数据的质量。成功的AIOps解决方案需要高质量的数据作为支撑,但当下离散的IT系统和数据信息孤岛让数据分析结果产生负面的影响,使得治理效果并不十分令用户满意。
5. 基于复杂项目交付的定制工作。国内企业需要大规模、端到端、基于企业内部的部署,需要大量定制和整合的工作,对于供应商而言是极大的挑战。
6. 中国企业的IT堆栈。随着国家政策的推进,企业面临本土化转型的挑战,很多三方工具(由国外引入)并不是全都能很好的支持本土AIOps平台。
擎创科技,作为国内首批智能运维领域的解决方案提供商,将持续锚定赛道,用心服务用户,不断根据落地反馈来优化升级解决方案,助力客户完成从传统运维到智能运维的转变,也希望真正的智慧运营能够早日到来。

AIOps对比传统运维工具的优势?

当前,随着企业数字业务的快速发展和业务量的攀升,企业信息系统架构的升级变迁,以及企业多套业务系统的在线运营,各类监控组件和应用系统间的关系错综复杂,系统运维的难度也急剧增加,且面临着巨大挑战。

在传统运维方式下,数据规模大且离散,数据治理和全面分析能力薄弱且依赖于经验和规则,运维十分被动,解决问题效率非常低下,运维的实用性大打折扣,难以满足当前主动运营的要求。

具体来说有以下几点:

发现问题难:企业在经年累月中布局了诸多监控工具,但是监控手段阈值的设定单一,且一般都是静态阈值,而指标和告警的异常却是多样化的,这样就会造成大量的误报漏报现象。此外,目前绝大多数的监控工具,缺乏趋势预测能力,使得运维局面非常被动,导致发现问题十分困难。

根因定位难:发现问题时一般都是对问题进行定性分析,可能了解到某一告警对应的指标波动是值得关注的,但是并不能因此确定造成这种现象具体根因。而且目前的监控工具,大多缺乏综合根因定界及定位分析的手段,即便对监控进行了集中管理,也难以通过单纯的几种指标进行根因定位。

数据治理难:当数字化建设进行到一定程度的时候,被管理对象的数据量相应的也是水涨船高,数据数量大、类别多且非常分散,很难通过某一指标体系来衡量系统的健康度,也没有一个统一的视角去判断数据质量的好坏优劣。

运营分析难:现有的大多数基础监控工具,多数都是从自己的管理阈例如系统管理、网络管理出发看待问题,缺乏端到端的分析能力,没办法以业务视角从综合运营分析的角度,去看待多样化指标对系统的影响。

而智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在运维数据治理、业务数字化风险、运维人力成本和业务侧影响力四个方面有本质的效能提升。

智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

智能运维发展正如火如荼,Gartner预见其为下一代运维,认为到2022年将有近50%的企业用户部署智能运维。虽然目前不少企业已经在积极投入建设,也还有一些企业处在迷茫阶段,对这种趋势不太清晰,借用著名作家威廉吉布森的话,“未来已来,只是分布不均。”

什么是AIOps智能运维?

智能运维AIOps平台智能运维aiops的思考,往往是通过大数据、机器学习和可视化的方式让IT运维工作变得更高效。企业基础设施与运维负责人应该尽早启动AIOps平台部署工作智能运维aiops的思考,优化当前的性能分析智能运维aiops的思考,并在未来两年至五年内扩展至IT服务管理和自动化领域。

AIOps平台是将大数据与机器学习功能相结合的软件系统,主要对IT系统不断产生的数据量、类型和速度进行拓展性的采集和分析,以支撑IT运维的主要功能。该平台能够同时使用多个数据源、数据采集方法、数据分析及演示技术。

AIOps可以应用到广泛的IT运维流程及场景中,包括性能分析、异常检测、事件关联分析、IT服务管理和自动化。

核心功能包括智能运维aiops的思考

从各种数据源中提取数据

对提取的数据进行实时分析

对存储的数据进行历史分析

提供数据访问接口

存储采集数据

使用机器学习技术

根据分析结果启动操作

AIOps在企业中日益占据主导地位,而一些成熟的组织已正在利用该技术为企业领导者提供决策支撑。

相比传统运维工具,AIOps的优势在哪里

智能运维是一种全新智能运维aiops的思考的数字化运维能力智能运维aiops的思考,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升智能运维aiops的思考

运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础智能运维aiops的思考

业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;

运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;

业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;

由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了颠覆。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。

AIOps时代到来了,我们要如何应对?

在当前数字化转型的浪潮下智能运维aiops的思考,企业 IT 运维方面的投资规模将逐步增加智能运维aiops的思考,IT 运维的关注方向也将逐步从自动化运维向智能化运维发展。伴随着企业规模扩大智能运维aiops的思考,业务模式更新,以及云计算、大数据、人工智能等新技术应用,AIOps智能运维能力已在科技、互联网、金融、电信等行业逐步落地应用,并呈现出多样化的发展趋势。

目前国内AIOps智能运维的发展现状是:

1. 多数企业近年来在运维方面的资金投入仍处于增长阶段。近 4 成企业运维方面年平均投资规模超5000 万元,投资规模在 5000 万元-1 亿元的企业占比 11.24%,1 亿元-5 亿元 的企业占比 13.45%。

2. 超半数企业在实现自动化运维、自动化部署的基础上进一步增强监控、运维智能化能力。 根据本次调查显示,61.21%的企业选择优先关注和投资 DevOps 自动化部署,52%的企 业选择优先关注和投资升级监控和 AIOps。

3. 智能运维已经在各行业逐步落地应用,特别是在科技、互联网、金融、电信几大领域应用效果十分显著。根据本次调查结果,科技和互联网行业受访者所在企业表示已建立智能运维aiops的思考了智能 运维平台并形成了相关评价体系分别占比 49.64%和 37.96%,其次是银行占比 28.99% 和电信企业占比 25.97%。 

4. AIOps 仍处于初期发展阶段,受访者对目前 AIOps 能力水平的评价与期望超过其所在企业实际应用的情况。从整体来看,30.27%的企业自评目前处于辅助智能化运维阶段,28.61%的企业自评处于进阶智能化运维阶段。

未来,AIOps 将是运维发展的必然趋势,也将是增长最快的方向。根据Gartner预测未来3-5年内,可观测的智能运维能够达到成熟期。


尤其对于中大型企业来说,企业的数字化转型成功与AIOps智能运维建设密不可分。基于这种情况,企业应该及早布局,才不会落于人后。

关于智能运维aiops的思考和aiops运维决策时间的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能运维aiops的思考的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于aiops运维决策时间、智能运维aiops的思考的信息别忘了在本站进行查找喔。
上一篇:关于it运维平台的优势的信息
下一篇:智能家居控制的N种姿势
相关文章

 发表评论

暂时没有评论,来抢沙发吧~