大数据智能运维架构设计(大数据定义智能运维)

来源网友投稿 1070 2022-12-25

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
本篇文章给大家谈谈大数据智能运维架构设计,以及大数据定义智能运维对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享大数据智能运维架构设计的知识,其中也会对大数据定义智能运维进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据架构师岗位的主要职责概述

大数据架构师岗位的主要职责概述 篇1

职责大数据智能运维架构设计

1、负责大数据平台及BI系统框架设计、规划、技术选型大数据智能运维架构设计,架构设计并完成系统基础服务的开发;

2、负责海量埋点规则、SDK标准化、埋点数据采集、处理及存储大数据智能运维架构设计,业务数据分布存储、流式/实时计算等应用层架构搭建及核心代码实现;

3、开发大数据平台的核心代码,项目敏捷开发流程管理,完成系统调试、集成与实施,对每个项目周期技术难题的解决,保证大数据产品的上线运行;

4、负责大数据平台的架构优化,代码评审,并根据业务需求持续优化数据架构,保证产品的可靠性、稳定性;

5、指导开发人员完成数据模型规划建设,分析模型构建及分析呈现,分享技术经验;

6、有效制定各种突发性研发技术故障的应对预案,有清晰的隐患意识;

7、深入研究大数据相关技术和产品,跟进业界先进技术;

任职要求

1、统计学、应用数学或计算机相关专业大学本科以上学历;

2、熟悉互联网移动端埋点方法(点击和浏览等行为埋点),无埋点方案等,有埋点SDK独立开发经验者优选;

3、熟悉Hadoop,MR/MapReduce,Hdfs,Hbase,Redis,Storm,Python,zookeeper,kafka,flinkHadoop,hive,mahout,flume,ElasticSearch,KafkaPython等,具备实际项目设计及开发经验;

4、熟悉数据采集、数据清洗、分析和建模工作相关技术细节及流程

5、熟悉Liunx/Unix操作系统,能熟练使用shell/perl等脚本语言,熟练掌握java/python/go/C++中一种或多种编程语言

6、具备一定的算法能力,了解机器学习/深度学习算法工具使用,有主流大数据计算组件开发和使用经验者优先

7、熟悉大数据可视化工具Tableau/echarts

8、具有较强的执行力,高度的责任感、很强的学习、沟通能力,能够在高压下高效工作;

大数据架构师岗位的主要职责概述 篇2

职责:

根据大数据业务需求,设计大数据方案及架构,实现相关功能;

搭建和维护大数据集群,保证集群规模持续、稳定、高效平稳运行;

负责大数据业务的设计和指导具体开发工作;

负责公司产品研发过程中的数据及存储设计;

针对数据分析工作,能够完成和指导负责业务数据建模。

职位要求:

计算机、自动化或相关专业(如统计学、数学)本科以上学历,3年以上大数据处理相关工作经验;

精通大数据主流框架(如Hadoop、hive、Spark等);

熟悉MySQL、NoSQL(MongoDB、Redis)等主流数据库,以及rabbit MQ等队列技术;

熟悉hadoop/spark生态的原理、特性且有实战开发经验;

熟悉常用的数据挖掘算法优先。

大数据架构师岗位的主要职责概述 篇3

职责:

1、大数据平台架构规划与设计;

2、负责大数据平台技术框架的选型与技术难点攻关;

3、能够独立进行行业大数据应用的整体技术框架、业务框架和系统架构设计和调优等工作,根据系统的业务需求,能够指导开发团队完成实施工作;

4、负责数据基础架构和数据处理体系的升级和优化,不断提升系统的稳定性和效率,为相关的业务提供大数据底层平台的支持和保证;

5、培养和建立大数据团队,对团队进行技术指导。

任职要求:

1、计算机相关专业的背景专业一类院校毕业本科、硕士学位,8年(硕士5年)以上工作经验(至少拥有3年以上大数据项目或产品架构经验);

2、精通Java,J2EE相关技术,精通常见开源框架的架构,精通关系数据库系统(Oracle MySQL等)和noSQL数据存储系统的原理和架构;

3、精通SQL和Mapreduce、Spark处理方法;

4、精通大数据系统架构,熟悉业界数据仓库建模方法及新的建模方法的发展,有DW,BI架构体系的专项建设经验;

5、对大数据体系有深入认识,熟悉Kafka、Hadoop、Hive、HBase、Spark、Storm、greenplum、ES、Redis等大数据技术,并能设计相关数据模型;

6、很强的学习、分析和解决问题能力,可以迅速掌握业务逻辑并转化为技术方案,能独立撰写项目解决方案、项目技术文档;

7、具有较强的内外沟通能力,良好的团队意识和协作精神;

8、机器学习技术、数据挖掘、人工智能经验丰富者优先考虑;

9、具有能源电力行业工作经验者优先。

大数据架构师岗位的主要职责概述 篇4

职责:

1.参与公司数据平台系统规划和架构工作,主导系统的架构设计和项目实施,确保项目质量和关键性能指标达成;

2.统筹和推进制造工厂内部数据系统的构建,搭建不同来源数据之间的逻辑关系,能够为公司运营诊断、运营效率提升提供数据支持;

3.负责数据系统需求对接、各信息化系统数据对接、软件供应商管理工作

5.根据现状制定总体的数据治理方案及数据体系建立,包括数据采集、接入、分类、开发标准和规范,制定全链路数据治理方案;深入挖掘公司数据业务,超强的数据业务感知力,挖掘数据价值,推动数据变现场景的落地,为决策及业务赋能;

6.定义不同的数据应用场景,推动公司的数据可视化工作,提升公司数据分析效率和数据价值转化。

任职要求:

1.本科以上学历,8年以上软件行业从业经验,5年以上大数据架构设计经验,熟悉BI平台、大数据系统相关技术架构及技术标准;

2.熟悉数据仓库、熟悉数据集市,了解数据挖掘、数据抽取、数据清洗、数据建模相关技术;

3.熟悉大数据相关技术:Hadoop、Hive、Hbase、Storm、Flink、Spark、Kafka、RabbitMQ;

4.熟悉制造企业信息化系统及相关数据库技术;

5.具备大数据平台、计算存储平台、可视化开发平台经验,具有制造企业大数据系统项目开发或实施经验优先;

6.对数据敏感,具备优秀的业务需求分析和报告展示能力,具备制造企业数据分析和数据洞察、大数据系统的架构设计能力,了解主流的报表工具或新兴的前端报表工具;

7.有较强的沟通和组织协调能力,具备结果导向思维,有相关项目管理经验优先。

大数据架构师岗位的.主要职责概述 篇5

职责:

1.负责产品级业务系统架构(如业务数据对象识别,数据实体、数据属性分析,数据标准、端到端数据流等)的设计与优化。协助推动跨领域重大数据问题的分析、定位、解决方案设计,从架构设计上保障系统高性能、高可用性、高安全性、高时效性、分布式扩展性,并对系统质量负责。

2.负责云数据平台的架构设计和数据处理体系的优化,推动云数据平台建设和持续升级,并制定云数据平台调用约束和规范。

3.结合行业应用的需求负责数据流各环节上的方案选型,主导云数据平台建设,参与核心代码编写、审查;数据的统计逻辑回归算法、实时交互分析;数据可视化方案等等的选型、部署、集成融合等等。

4.对云数据平台的关注业内技术动态,持续推动平台技术架构升级,以满足公司不同阶段的数据需求。

任职要求:

1.熟悉云计算基础平台,包括Linux(Ubuntu/CentOS)和KVM、OpenStack/K8S等基础环境,熟悉控制、计算、存储和网络;

2.掌握大型分布式系统的技术栈,如:CDN、负载均衡、服务化/异步化、分布式缓存、NoSQL、数据库垂直及水平扩容;熟悉大数据应用端到端的相关高性能产品。

3.精通Java,Python,Shell编程语言,精通SQL、NoSQL等数据库增删改查的操作优化;

4.PB级别实战数据平台和生产环境的实施、开发和管理经验;

5.熟悉Docker等容器的编排封装,熟悉微服务的开发和日常调度;

6.计算机、软件、电子信息及通信等相关专业本科以上学历,5年以上软件工程开发经验,2年以上大数据架构师工作经验。

大数据架构师岗位的主要职责概述 篇6

职责描述:

1、负责集团大数据资产库的技术架构、核心设计方案,并推动落地大数据智能运维架构设计

2、带领大数据技术团队实现各项数据接入、数据挖掘分析及数据可视化;

3、新技术预研,解决团队技术难题。

任职要求:

1、在技术领域有5年以上相关经验,3年以上的架构设计或产品经理经验;

2、具有2年以上大数据产品和数据分析相关项目经验;

3、精通大数据分布式系统(hadoop、spark、hive等)的架构原理、技术设计;精通linux系统;精通一门主流编程语言,java优先。

大数据架构师岗位的主要职责概述 篇7

岗位职责:

1、基于公司大数据基础和数据资产积累,负责大数据应用整体技术架构的设计、优化,建设大数据能力开放平台;负责大数据应用产品的架构设计、技术把控工作。

2、负责制定大数据应用系统的数据安全管控体系和数据使用规范。

3、作为大数据技术方案到产品实现的技术负责人,负责关键技术点攻坚工作,负责内部技术推广、培训及知识转移工作。

4、负责大数据系统研发项目任务规划、整体进度、风险把控,有效协同团队成员并组织跨团队技术协作,保证项目质量与进度。

5、负责提升产品技术团队的技术影响力,针对新人、普通开发人员进行有效辅导,帮助其快速成长。

任职资格:

1、计算机、数学或相关专业本科以上学历,5—20xx年工作经验,具有大型系统的技术架构应用架构数据架构相关的实践工作经验。

2、有分布式系统分析及架构设计经验,熟悉基于计算集群的软件系统架构和实施经验。

3、掌握Hadoop/Spark/Storm生态圈的主流技术及产品,深入了解Hadoop/Spark/Storm生态圈产品的工作原理及应用场景。

4、掌握Mysql/Oracle等常用关系型数据库,能够对SQL进行优化。

5、熟悉分布式系统基础设施中常用的技术,如缓存(Varnish、Memcache、Redis)、消息中间件(Rabbit MQ、Active MQ、Kafka、NSQ)等;有实践经验者优先。

6、熟悉Linux,Java基础扎实,至少3—5年以上Java应用开发经验,熟悉常用的设计模式和开源框架。

大数据架构师岗位的主要职责概述 篇8

岗位职责:

1、负责公司大数据平台架构的技术选型和技术难点攻关工作;

2、依据行业数据现状和客户需求,完成行业大数据的特定技术方案设计与撰写;

3、负责研究跟进大数据架构领域新兴技术并在公司内部进行分享;

4、参与公司大数据项目的技术交流、解决方案定制以及项目的招投标工作;

5、参与公司大数据项目前期的架构设计工作;

任职要求:

1、计算机及相关专业本科以上,5年以上数据类项目(数据仓库、商务智能)实施经验,至少2年以上大数据架构设计和开发经验,至少主导过一个大数据平台项目架构设计;

2、精通大数据生态圈的技术,包括但不限于MapReduce、Spark、Hadoop、Kafka、Mongodb、Redis、Flume、Storm、Hbase、Hive,具备数据统计查询性能优化能力。熟悉星环大数据产品线及有过产品项目实施经验者优先;

3、优秀的方案撰写能力,思路清晰,逻辑思维强,能够根据业务需求设计合理的解决方案;

4、精通ORACLE、DB2、mySql等主流关系型数据库,熟悉数据仓库建设思路和数据分层架构思想;

5。熟练掌握java、R、python等1—2门数据挖掘开发语言;

6。熟悉云服务平台及微服务相关架构思想和技术路线,熟悉阿里云或腾讯云产品者优先;

7、有烟草或制造行业大数据解决方案售前经验者优先;

8、能适应售前支持和项目实施需要的短期出差;

大数据架构师岗位的主要职责概述 篇9

岗位职责:

1、负责相关开源系统/组件的性能、稳定性、可靠性等方面的深度优化;

2、负责解决项目上线后生产环境的各种实际问题,保障大数据平台在生产上的安全、平稳运行;

3、推动优化跨部门的业务流程,参与业务部门的技术方案设计、评审、指导;

4、负责技术团队人员培训、人员成长指导。

5、应项目要求本月办公地址在锦江区金石路316号新希望中鼎国际办公,月底项目结束后在总部公司办公

任职要求:

1、熟悉linux、JVM底层原理,能作为技术担当,解决核心技术问题;

2、3年以上大数据平台项目架构或开发经验,对大数据生态技术体系有全面了解,如Yarn、Spark、HBase、Hive、Elasticsearch、Kafka、PrestoDB、Phoenix等;

3、掌握git、maven、gradle、junit等工具和实践,注重文档管理、注重工程规范优先;

4、熟悉Java后台开发体系,具备微服务架构的项目实施经验,有Dubbo/Spring cloud微服务架构设计经验优先;

5、性格开朗、善于沟通,有极强的技术敏感性和自大数据智能运维架构设计我驱动学习能力,注重团队意识。

大数据架构师岗位的主要职责概述 篇10

职责描述:

1、负责大数据平台框架的规划设计、搭建、优化和运维;

2、负责架构持续优化及系统关键模块的设计开发,协助团队解决开发过程中的技术难题;

3、负责大数据相关新技术的调研,关注大数据技术发展趋势、研究开源技术、将新技术应用到大数据平台,推动数据平台发展;

4、负责数据平台开发规范制定,数据建模及核心框架开发。

任职要求:

1、计算机、数学等专业本科及以上学历;

2、具有5年及以上大数据相关工作经验;

3、具有扎实的大数据和数据仓库的理论功底,负责过大数据平台或数据仓库设计;

4、基于hadoop的大数据体系有深入认识,具备相关产品(hadoop、hive、hbase、spark、storm、 flume、kafka、es等)项目应用研发经验,有hadoop集群搭建和管理经验;

5、熟悉传统数据仓库数据建模,etl架构和开发流程,使用过kettle、talend、informatic等至少一种工具;

6、自驱力强、优秀的团队意识和沟通能力,对新技术有好奇心,学习能力和主动性强,有钻研精神,充满激情,乐于接受挑战;

开发自动化运维架构六要素

运维自动化是我们所渴望获得的,但是我们在一味强调自动化能力时,却忽略了影响自动化落地的一个关键因素。那便是跟运维朝夕相处,让人又爱又恨的业务架构。
要点一:架构独立
任何架构的产生都是为了满足特定的业务诉求,如果我们在满足业务要求的同时,能够兼顾运维对架构管理的非功能性要求。那么我们有理由认为这样的架构是对运维友好的。
站在运维的角度,所诉求的架构独立包含四个方面:独立部署,独立测试,组件化和技术解耦。
独立部署
指的是一份源代码,可以按照便于运维的管理要求去部署、升级、伸缩等,可通过配置来区分地域分布。服务间相互调用通过接口请求实现,部署独立性也是运维独立性的前提。
独立测试
运维能够通过一些便捷的测试用例或者工具,验证该业务架构或服务的可用性。具备该能力的业务架构或服务让运维具备了独立上线的能力,而不需要每次发布或变更都需要开发或测试人员的参与。
组件规范
指的是在同一个公司内对相关的技术能有很好的框架支持,从而避免不同的开发团队使用不同的技术栈或者组件,造成公司内部的技术架构失控。
这种做法能够限制运维对象的无序增加,让运维对生产环境始终保持着掌控。同时也能够让运维保持更多的精力投入,来围绕着标准组件做更多的效率与质量的建设工作。
技术解耦
指的是降低服务和服务之间相互依赖的关系,也包含了降低代码对配置文件的依赖。这也是实现微服务的基础,实现独立部署、独立测试、组件化的基础。
要点二:部署友好
DevOps 中有大量的篇幅讲述持续交付的技术实践,希望从端到端打通开发、测试、运维的所有技术环节,以实现快速部署和交付价值的目标。可见,部署是运维日常工作很重要的组成部分,是属于计划内的工作,重复度高,必须提升效率。
实现高效可靠的部署能力,要做好全局规划,以保证部署以及运营阶段的全方位运维掌控。有五个纬度的内容是与部署友好相关的:
CMDB配置
在每次部署操作前,运维需要清晰的掌握该应用与架构、与业务的关系,为了更好的全局理解和评估工作量和潜在风险。
在织云自动化运维平台中,我们习惯于将业务关系、集群管理、运营状态、重要级别、架构层等配置信息作为运维的管理对象纳管于CMDB配置管理数据库中。这种管理办法的好处很明显,集中存储运维对象的配置信息,对日后涉及的运维操作、监控和告警等自动化能力建设,将提供大量的配置数据支撑和决策辅助的功效。
环境配置
在运维标准化程度不高的企业中,阻碍部署交付效率的原罪之一便是环境配置,这也是容器化技术主要希望解决的运维痛点之一。
腾讯的运维实践中,对开发、测试、生产三大主要环境的标准化管理,通过枚举纳管与环境相关的资源集合与运维操作,结合自动初始化工具以实现标准环境管理的落地。
依赖管理
解决应用软件对库、运营环境等依赖关系的管理。在织云实践经验中,我们利用包管理,将依赖的库文件或环境的配置,通过整体打包和前后置执行脚本的方案,解决应用软件在不同环境部署的难题。业界还有更轻量的容器化交付方法,也是不错的选择。
部署方式
持续交付原则提到要打造可靠可重复的交付流水线,对应用软件的部署操作,我们也强烈按此目标来规划。业界有很多案例可以参考,如Docker的Build、Ship、Run,如织云的通过配置描述、标准化流程的一键部署等等。
发布自测
发布自测包含两部分:
应用的轻量级测试;
发布/变更内容的校对。
建设这两种能力以应对不同的运维场景需求,如在增量发布时,使用发布内容的校对能力,运维人员可快速的获取变更文件md5,或对相关的进程和端口的配置信息进行检查比对,确保每次发布变更的可靠。
同理,轻量级测试则是满足发布时对服务可用性检测的需求,此步骤可以检测服务的连通性,也可以跑些主干的测试用例。
灰度上线
在《日常运维三十六计》中有这么一句话:对不可逆的删除或修改操作,尽量延迟或慢速执行。这便是灰度的思想,无论是从用户、时间、服务器等纬度的灰度上线,都是希望尽量降低上线操作的风险,业务架构支持灰度发布的能力,让应用部署过程的风险降低,对运维更友好。
要点三:可运维性
运维脑海中最理想的微服务架构,首当其冲的肯定是可运维性强的那类。不具可运维性的应用或架构,对运维团队带来的不仅仅是黑锅,还有对他们职业发展的深深的伤害,因为维护一个没有可运维性的架构,简直就是在浪费运维人员的生命。
可运维性按操作规范和管理规范可以被归纳为以下七点:
配置管理
在微服务架构管理中,我们提议将应用的二进制文件与配置分离管理,以便于实现独立部署的目的。
被分离出来的应用配置,有三种管理办法:
文件模式;
配置项模式;
分布式配置中心模式。
限于篇幅不就以上三种方式的优劣展开讨论。不同的企业可选用最适用的配置管理办法,关键是要求各业务使用一致的方案,运维便可以有针对性的建设工具和系统来做好配置管理。
版本管理
DevOps持续交付八大原则之一“把所有的东西都纳入版本控制”。就运维对象而言,想要管理好它,就必须能够清晰的描述它。
和源代码管理的要求类似,运维也需要对日常操作的对象,如包、配置、脚本等都进行脚本化管理,以备在运维系统在完成自动化操作时,能够准确无误的选定被操作的对象和版本。
标准操作
运维日常有大量重复度高的工作需要被执行,从精益思想的视角看,这里存在极大的浪费:学习成本、无价值操作、重复建设的脚本/工具、人肉执行的风险等等。
倘若能在企业内形成统一的运维操作规范,如文件传输、远程执行、应用启动停止等等操作都被规范化、集中化、一键化的操作,运维的效率和质量将得以极大的提升。
进程管理
包括应用安装路径、目录结构、规范进程名、规范端口号、启停方式、监控方案等等,被收纳在进程管理的范畴。做好进程管理的全局规划,能够极大的提升自动化运维程度,减少计划外任务的发生。
空间管理
做好磁盘空间使用的管理,是为了保证业务数据的有序存放,也是降低计划外任务发生的有效手段。
要求提前做好的规划:备份策略、存储方案、容量预警、清理策略等,辅以行之有效的工具,让这些任务不再困扰运维。
日志管理
日志规范的推行和贯彻需要研发密切配合,在实践中得出的经验,运维理想中的日志规范要包含这些要求:
业务数据与日志分离
日志与业务逻辑解耦
日志格式统一
返回码及注释清晰
可获取业务指标(请求量/成功率/延时)
定义关键事件
输出级别
管理方案(存放时长、压缩备份等)
当具体上述条件的日志规范得以落地,开发、运维和业务都能相应的获得较好的监控分析能力。
集中管控
运维的工作先天就容易被切割成不同的部分,发布变更、监控分析、故障处理、项目支持、多云管理等等,我们诉求一站式的运维管理平台,使得所有的工作信息能够衔接起来和传承经验,杜绝因为信息孤岛或人工传递信息而造成的运营风险,提升整体运维管控的效率和质量。
要点四:容错容灾
在腾讯技术运营(运维)的四大职责:质量、效率、成本、安全。质量是首要保障的阵地,转换成架构的视角,运维眼中理想的高可用架构架构设计应该包含以下几点:
负载均衡
无论是软件或硬件的负责均衡的方案,从运维的角度出发,我们总希望业务架构是无状态的,路由寻址是智能化的,集群容错是自动实现的。
在腾讯多年的路由软件实践中,软件的负载均衡方案被广泛应用,为业务架构实现高可用立下汗马功劳。
可调度性
在移动互联网盛行的年代,可调度性是容灾容错的一项极其重要的运维手段。在业务遭遇无法立刻解决的故障时,将用户或服务调离异常区域,是海量运营实践中屡试不爽的技巧,也是腾讯QQ和微信保障平台业务质量的核心运维能力之一。
结合域名、VIP、接入网关等技术,让架构支持调度的能力,丰富运维管理手段,有能力更从容的应对各种故障场景。
异地多活
异地多活是数据高可用的诉求,是可调度性的前提。针对不同的业务场景,技术实现的手段不限。
腾讯社交的实践可以参考周小军老师的文章“2亿QQ用户大调度背后的架构设计和高效运营”。
主从切换
在数据库的高可用方案中,主从切换是最常见的容灾容错方案。通过在业务逻辑中实现读写分离,再结合智能路由选择实现无人职守的主从切换自动化,无疑是架构设计对DBA最好的馈赠。
柔性可用
“先扛住再优化”是腾讯海量运营思想之一,也为我们在做业务架构的高可用设计点明了方向。
如何在业务量突增的情况下,最大程度的保障业务可用?是做架构规划和设计时不可回避的问题。巧妙的设置柔性开关,或者在架构中内置自动拒绝超额请求的逻辑,能够在关键时刻保证后端服务不雪崩,确保业务架构的高可用。
要点五:质量监控
保障和提高业务质量是运维努力追逐的目标,而监控能力是我们实现目标的重要技术手段。运维希望架构为质量监控提供便利和数据支持,要求实现以下几点:
指标度量
每个架构都必须能被指标度量,同时,我们希望的是最好只有唯一的指标度量。对于业务日趋完善的立体化监控,监控指标的数量随之会成倍增长。因此,架构的指标度量,我们希望的是最好只有唯一的指标度量。
基础监控
指的是网络、专线、主机、系统等低层次的指标能力,这类监控点大多属于非侵入式,很容易实现数据的采集。
在自动化运维能力健全的企业,基础监控产生的告警数据绝大部分会被收敛掉。同时,这部分监控数据将为高层次的业务监控提供数据支撑和决策依据,或者被包装成更贴近上层应用场景的业务监控数据使用,如容量、多维指标等。
组件监控
腾讯习惯把开发框架、路由服务、中间件等都统称为组件,这类监控介于基础监控和业务监控之间,运维常寄希望于在组件中内嵌监控逻辑,通过组件的推广,让组件监控的覆盖度提高,获取数据的成本属中等。如利用路由组件的监控,运维可以获得每个路由服务的请求量、延时等状态和质量指标。
业务监控
业务监控的实现方法分主动和被动的监控,即可侵入式实现,又能以旁路的方式达到目的。这类监控方案要求开发的配合,与编码和架构相关。
通常业务监控的指标都能归纳为请求量、成功率、延时3种指标。实现手段很多,有日志监控、流数据监控、波测等等,业务监控属于高层次的监控,往往能直接反馈业务问题,但倘若要深入分析出问题的根源,就必须结合必要的运维监控管理规范,如返回码定义、日志协议等。需要业务架构在设计时,前置考虑运维监控管理的诉求,全局规划好的范畴。
全链路监控
基础、组件、业务的监控手段更多的是聚焦于点的监控,在分布式架构的业务场景中,要做好监控,我们必须要考虑到服务请求链路的监控。
基于唯一的交易ID或RPC的调用关系,通过技术手段还原调用关系链,再通过模型或事件触发监控告警,来反馈服务链路的状态和质量。该监控手段属于监控的高阶应用,同样需要业务架构规划时做好前置规划和代码埋点。。
质量考核
任何监控能力的推进,质量的优化,都需要有管理的闭环,考核是一个不错的手段,从监控覆盖率、指标全面性、事件管理机制到报表考核打分,运维和开发可以携手打造一个持续反馈的质量管理闭环,让业务架构能够不断进化提升。
要点六:性能成本
在腾讯,所有的技术运营人员都肩负着一个重要的职能,就是要确保业务运营成本的合理。为此,我们必须对应用吞吐性能、业务容量规划和运营成本都要有相应的管理办法。
吞吐性能
DevOps持续交付方法论中,在测试阶段进行的非功能需求测试,其中很重要一点便是对架构吞吐性能的压测,并以此确保应用上线后业务容量的健康。
在腾讯的实践中,不仅限于测试阶段会做性能压测,我们会结合路由组件的功能,对业务模块、业务SET进行真实请求的压测,以此建立业务容量模型的基准。也从侧面提供数据论证该业务架构的吞吐性能是否达到成本考核的要求,利用不同业务间性能数据的对比,来推动架构性能的不断提高。
容量规划
英文capacity一词可以翻译成:应用性能、服务容量、业务总请求量,运维的容量规划是指在应用性能达标的前提下,基于业务总请求量的合理的服务容量规划。
运营成本
减少运营成本,是为公司减少现金流的投入,对企业的价值丝毫不弱于质量与效率的提升。
腾讯以社交、UGC、云计算、游戏、视频等富媒体业务为主,每年消耗在带宽、设备等运营成本的金额十分巨大。运维想要优化运营成本,常常会涉及到产品功能和业务架构的优化。因此,运维理想的业务架构设计需要有足够的成本意识,
小结
本文纯属个人以运维视角整理的对微服务架构设计的一些愚见,要实现运维价值最大化,要确保业务质量、效率、成本的全面提高,业务架构这块硬骨头是不得不啃的。
运维人需要有架构意识,能站在不同角度对业务架构提出建议或需求,这也是DevOps 精神所提倡的,开发和运维联手,持续优化出最好的业务架构。

智能运维是什么?

得益于IT外包服务的发达,现在的运维已经不包括搬机器上架、接网线、安装操作系统等基础工作,运维人员一般会从一台已安装好指定版本的操作系统、分配好IP地址和账号的服务器入手,工作范围大致包括:服务器管理(操作系统层面,比如重启、下线)、软件包管理、代码上下线、日志管理和分析、监控(区分系统、业务)和告警、流量管理(分发、转移、降级、限流等),以及一些日常的优化、故障排查等。
随着业务的发展、服务器规模的扩大,才及云化(公有云和混合云)、虚拟化的逐步落实,运维工作就扩展到了容量管理、弹性(自动化)扩缩容、安全管理,以及(引入各种容器、开源框架带来的复杂度提高而导致的)故障分析和定位等范围。
听上去每一类工作都不简单。不过,好在这些领域都有成熟的解决方案、开源软件和系统,运维工作的重点就是如何应用好这些工具来解决问题。
传统的运维工作经过不断发展(服务器规模的不断扩大),大致经历了人工、工具和自动化、平台化和智能运维(AIOps)几个阶段。这里的AIOps不是指Artificial Intelligence for IT Operations,而是指Algorithmic IT Operations(基于Gartner的定义标准)。
基于算法的IT运维,能利用数据和算法提高运维的自动化程度和效率,比如将其用于告警收敛和合并、Root分析、关联分析、容量评估、自动扩缩容等运维工作中。
在Monitoring(监控)、Service Desk(服务台)、Automation(自动化)之上,利用大数据和机器学习持续优化,用机器智能扩展人类的能力极限,这就是智能运维的实质含义。
智能运维具体的落地方式,各团队也都在摸索中,较早见效的是在异常检测、故障分析和定位(有赖于业务系统标准化的推进)等方面的应用。智能运维平台逻辑架构如图所示。
智能运维平台逻辑架构图
智能运维决不是一个跳跃发展的过程,而是一个长期演进的系统,其根基还是运维自动化、监控、数据收集、分析和处理等具体的工程。人们很容易忽略智能运维在工程上的投入,认为只要有算法就可以了,其实工程能力和算法能力在这里同样重要。
智能运维需要解决的问题有:海量数据存储、分析、处理,多维度,多数据源,信息过载,复杂业务模型下的故障定位。这些难题是否会随着智能运维的深入应用而得到一定程度的解决呢?我们会在下一篇文章中逐步展开这些问题,并提供一些解决方案。
本文选自《智能运维:从0搭建大规模分布式AIOps系统》,作者彭冬、朱伟、刘俊等,电子工业出版社2018年7月出版。
本书结合大企业的智能运维实践,全面完整地介绍智能运维的技术体系,让读者更加了解运维技术的现状和发展。同时,帮助运维工程师在一定程度上了解机器学习的常见算法模型,以及如何将它们应用到运维工作中。

大数据技术专业主要课程 学什么的

面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。

大数据技术专业就业前景

作为人口大国和制造大国,我国数据产生能力巨大,大数据资源极为丰富。随着数字中国建设的推进,各行业的数据资源采集、应用能力不断提升,将会导致更快更多的数据积累。预计到2020年底,我国数据总量预计将占全球数据总量的21%,将成为名列前茅的数据资源大国和全球数据中心。

根据2019年教育部公布的《2018年度普通高等学校本科专业备案和审批结果》显示。据统计,普通高校此次新增大数据智能运维架构设计了2072个本科专业,其中包括1831个新增备案专业和241个新增审批专业。

新增专业中,数据科学与大数据技术专业备受欢迎,全国共196所高校新增大数据智能运维架构设计了该专业。

而根据清华大学经管学院2017年11月发布的《中国经济的数字化转型:人才与就业》报告显示,当前我国大数据领域人才缺口高达150万,到2025年将达到200万。

大数据技术专业就业方向

分析类岗位

分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。

算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题大数据智能运维架构设计;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。

研发类岗位

架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。

开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。

运维工程师。负责大数据基础平台的运维,保障平台的稳定可用,参与设计大数据自动化运维、监控、故障处理工具。

管理类岗位

产品经理。负责大数据平台产品的设计工作,主导数据产品的功能规划、体验设计,与研发、数据分析、算法团队紧密合作,挖掘数据价值,形成数据产品,包括部分数据可视化的产品设计等。

运营经理。根据业务特点,结合业务发展需求,设立数据监控模型,搭建数据分析架构,理解业务方向和战略,为业务战略决策、业务方向提供决策支持,竞争分析及建议。

关于大数据智能运维架构设计和大数据定义智能运维的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 大数据智能运维架构设计的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据定义智能运维、大数据智能运维架构设计的信息别忘了在本站进行查找喔。
上一篇:运维事件管理过程(运维事件分析)
下一篇:关于二维影像扫描器的作用和应用分析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~