仪表放大器:三运放INA的基础操作简介

网友投稿 1105 2022-12-21

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

仪表放大器:三运放INA的基础操作简介

三运放INA基础操作

INA本身的性质使其适用于调理小信号。其高阻抗与高共模抑制比的结合非常适合传感器应用。通过使用输入级的同相输入可实现高输入阻抗,无需靠任何反馈技巧(见图1)。三运放电路可消除共模电压,并以非常小的误差放大传感器信号,但必须考虑输入共模电压(VCM)和差分电压(VD),以免使INA的输入级达到饱和。

饱和的输入级可能看似对处理电路是正常的,但实际上却具有灾难性后果。通过使用具有轨到轨输入和输出(RRIO)配置的放大器来提供最大设计余量,有助于避免出现输入级饱和。以下讨论介绍了三运放INA的基本操作,并举例说明了放大器如何处理共模和差分信号。

图1是三运放INA的框图。按照设计,输入被分为共模电压VCM和差分电压VD。其中,VCM定义为两个输入的共用电压,是INA+与INA-之和的平均值,VD定义为INA+与INA-的净差(见式1)。

式1:

图1. 三运放INA及其电压节点

式2给出了由于施加共模电压和差分电压而在INA输入引脚上产生的节点电压(INA+、INA-)。

式2:

式3:

因此A1和A2的输出电压为:

式4:

将式3代入式4可得:

式5:

其中

零漂移放大器的优点

无论采用什么工艺技术和架构,所有放大器的输入失调电压都会随温度和时间而变化。制造商会提供关于输入失调电压随温度变化的技术规范(以每摄氏度伏特数表示)。传统放大器的该规范是每摄氏度几微伏至几十微伏。该失调漂移在高精密应用中可能会出问题,且无法在初始制造期间校准。除了随温度变化的漂移,放大器的输入失调电压还会随着时间的推移而漂移,并造成很大的产品寿命误差。由于显而易见的原因,产品数据表不包括关于该漂移的技术规范。

通过连续自我校正失调电压,使漂移随温度和时间的变化降到最小程度,是零漂移放大器的固有特性。有些零漂移放大器对失调电压的校正频率高达每秒10,000次。输入失调电压(VOS)是一个关键参数,且在使用INA来测量传感器信号时还会引起DC误差。零漂移放大器(如ISL2853x和ISL2863x)能够提供5nV/C的极低失调漂移。

图2. 半导体中的噪声密度:从1/f噪声到白噪声

RFI输入滤波器的重要性

图3. 带RFI输入滤波器的INA的输入级

传感器健康的监测

图4. VA+ 和 VA- 引脚可以对接输入增益级的输出

可编程增益放大器的优点

广泛被接受的一点是,不能使用分立元件来构建精密差分放大器,并获得良好的CMR性能或增益准确度。这是由于用于将运算放大器配置为差分放大器的四个外部电阻的匹配所致。分析表明,电阻公差会造成CMR范围上限高达运算放大器的极限,下限低至-24.17Db2。

集成式解决方案可改善片上电阻匹配,但当用于设置放大器的增益时,仍然存在与外部电阻的绝对匹配问题。片上精密电阻阻值与外部电阻阻值之间的偏差,可能达到20%甚至30%。另一个误差来源是内部和外部电阻之间的热性能差异。内部和外部电阻可能具有相反的温度系数。

可编程增益放大器解决这个问题的途径是使所有电阻均为内部电阻。此类放大器的增益误差(见式6)可能小于1%,并在温度变化条件下具有±0.05%典型值和±0.4%最大值(增益可达500)的调整能力。

式6:

表1:可编程增益值

传感器健康监测器和有源屏蔽驱动应用范例

传感器健康监测器

桥式传感器使用四个匹配的电阻性元件来构建平衡的差分电路。电桥可以是分立电阻和电阻性传感器的组合,用于四分之一桥、半桥和全桥应用。电桥由位于两个支路上的低噪声、高准确度电压基准源驱动。另两个支路是差分信号,其输出电压变化与被感测环境的变化相似。在桥式电路中,差分信号的共模电压是电桥激发源的“中点”电位电压。例如,在使用+5V基准源作为激发源的单电源系统中,共模电压为+2.5V。

图5. 传感器健康监测应用电路图

有源屏蔽驱动

在某些数据采集系统中,传感器信号放大器使用双路供电电压(±2.5V)。将屏蔽连接至模拟接地端(0V)会将屏蔽的共模电压恰好放置于偏置电源中点,亦即放大器CMR性能最佳的位置。随着单路电源放大器(5V)渐渐成为传感器放大器的更受欢迎的选择,将屏蔽连接于0V位置的方法目前是连接于放大器的较低电源轨,这通常是CMR性能会出现下降的共模电压。将屏蔽连接至中点供电电压值的共模电压会使放大器以最佳CMR性能工作。

改善屏蔽驱动的另一个解决方案是使用ISL2853x和ISL2863x的VA+和VA-引脚,来感测共模电压并驱动屏蔽至该电压(见图6)。使用VA+和VA-引脚可产生输入共模电压的低阻抗基准源。驱动屏蔽至输入共模电压,可减小电缆阻抗失配和提升单电源传感器应用的CMR性能。对屏蔽驱动电路的进一步缓冲,可使用ISL2853x产品上的附加未使用运算放大器,从而消除对添加外部放大器的需求。

图6. 有源屏蔽应用电路图

结论

这些放大器提供轨到轨输入和输出,以便既保证最大动态范围又不使输入级达到饱和。它们是提供自动失调电压校正和降噪的零漂移放大器,具有5nV/°C的极低失调电压漂移和低1/F噪声(转角频率降至低于1Hz)。输入端具有用于EMI敏感应用的RFI输入滤波器,同时集成了用于前端增益级和差分第二级的精密匹配电阻,从而提供非常低的增益误差(±0.05%)和卓越的CMR(138dB)。

精密性能使这些放大器非常适合模拟传感器前端、仪表和数据采集应用,如需要非常低噪声和高动态范围的称重装置、流量传感器和分流器电流感测。

Don LaFontaine是Intersil公司精密产品线的高级首席应用工程师,工作地点在佛罗里达州棕榈湾。他在工程领域的工作重点是精密模拟产品。他拥有南佛罗里达大学的电子工程学士学位(BSEE)。

上一篇:智慧粮库三维可视化数字孪生管理系统
下一篇:广和通荣获“2021AIoT·新维奖 行业先锋榜”
相关文章

 发表评论

暂时没有评论,来抢沙发吧~