二维光催化材料的能带结构为什么会如此重要?

网友投稿 711 2022-12-21

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

二维光催化材料的能带结构为什么会如此重要?

与水接触后,二维光催化材料的能带结构尤其是其带边位置会发生改变,这对于光分解水和人工光合作用等领域的应用研究至关重要。但由于固液界面体系的复杂性,现有的基于第一性原理计算的理论框架在研究固液界面的带边位置时,通常会忽略水的存在或者采用刚性移动带边位置的近似。而对于二维体系,界面处的电子结构变化会直接影响整个体系的物理化学性质,因此在研究二维光催化材料与水的界面时,基于密度泛函理论的有能力包含能带结构重整和固液界面处的化学效应的计算框架亟待提出。

郭鸿教授课题组自主开发的实空间密度泛函理论软件RESCU可以在不损失计算精度的情况下,大大提高第一性原理计算的效率,实现了在中小型计算平台上计算数千至数万元子体系的能力。本工作利用RESCU,定量预测了四种微观起源导致的带边位置变化,包括几何结构形变,水的偶极矩排列,界面处的电荷转移和二维材料与水的化学相互作用。计算结果发现二维光催化材料的价带顶和导带底并不是刚性移动的,二者移动的不同来源于二维材料的几何结构形变和其与水的化学接触。另外该研究结果在含有垂直界面轨道的材料中具有普适性,并在GaS, InSe, GaSe 和 InS等体系得到证实,发现这类二维材料和水的接触也具有化学相互作用导致的额外带边位置平移。

最后,本研究还发现水中MoS2的导带底上移,从热力学角度分析有利于载流子参与氢还原反应(HER),这也解释了实验报道的MoS2是高效氢还原材料的结果。本研究为理论预测水中二维材料的电子结构和进一步设计廉价高效的二维光催化材料做出了非常有益的贡献。

上一篇:苹果将通过面部识别技术改进三维触控功能
下一篇:智慧粮库三维可视化数字孪生管理系统
相关文章

 发表评论

暂时没有评论,来抢沙发吧~