睿象云智能告警平台的分派策略
1063
2022-12-19
本篇文章给大家谈谈运维智能监控平台,以及监控运营平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享运维智能监控平台的知识,其中也会对监控运营平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
1、智能运维平台系统是什么
2、智能运维管理平台是如何进行运维管理的?
3、运维监控工具太多,根因定位不够智能和快速,如何解决?
4、如何做好运维监控?
5、阿里云的智能运维平台是什么
6、正泰Epower智能运维云平台 | 信息化管理走出降本增效“康庄大道”
智能运维平台,又称AIOps,是将AI赋能于IT传统运维,通过对日志、指标、Trace等数据的分析,协助运维工程师更快速精准地发现故障、定位故障,并排除故障,提高运维效率、降低运维成本。
一套完整的智能运维平台系统,通常包括:
(1)数字运维中台:提供数据治理服务、流批一体化服务和AI算法平台服务。
(2)统一监控中心:将监控对象与运维数据关联,实现对象视角的全面可观测性方案
(3)告警辨析中心:智能化集中告警,构建闭环告警管理
(4)指标解析中心:集中管理监控指标,AI算法智能化检测分析
(5)日志精析中心/日智速析专家:海量数据处理,串联及多维分析,实时聚类检测
(6)运营决策中心:多源数据接入,多设备统一管理,自定义观测场景
智能运维平台系统的部署,可以根据现有情况分步骤进行。先从急需的场景入手,再辅以运维数据的治理,即可发挥其作用,让运维工作提升一个档次
IT运维从传统走向智慧,首先要经历数字化运维阶段,搭建数字运维中台既是实现运维数据有效治理的前提和基础,也是推进运维数智化转型的第一步。针对上述需求,擎创科技自主研发的擎创夏洛克AIOps智慧运营平台(如下图所示)可通过数字运维中台,对运维数据进行统一的采集存储和管理,即便面对高达100TB的日增数据量,也可进行秒级实时分析,为异常检测、根因定位等场景奠定坚实基础。
擎创夏洛克AIOps智慧运营平台架构
与传统运维方式相比,智能化运维最突出的优势是“数据大集中”,即基于数字运维中台建设,通过统一监控中心来集中管理和分析所有运维数据,并以业务视角观测运维数据的相关性,最终建立智能化场景来解决实际问题。擎创自主研发的智能运维产品——夏洛克AIOps智慧运营平台,刚好为此量身定制。它能以全局运营视角解读IT运维,在AI算法平台的支撑下实现包括精准告警、异常检测、根因定位和容量分析等场景,助力企业数字化业务高效、稳定和顺畅运行。
擎创夏洛克AIOps智慧运营平台架构
目前,夏洛克AIOps已在政府机关组织、银行业、证券保险业和交通运输业等行业场景中应用落地,极大节省了企业客户的人力成本和资金成本,提升了运维的有效性和质量。例如,通过为客户构建智能运维平台,轻松应对日增80TB的数据量,让客户平均故障修复时间(MTTR)缩短150%以上,运维总体拥有成本(TCO)下降80%以上。
常规运维智能监控平台的运维监控工具,基本都是监控某一种设备或某种应用的数据,并且通过阈值的设置来进行故障告警。这样虽然也达到运维智能监控平台了监控的目的,但在实际使用中,常遇到一个个设置阈值特别麻烦、阈值设置不合理造成告警过少或过多、不同监控数据之间没有关联,出一个故障各系统都在告警,难以判断根因的情况。
智能运维AIOps系统,能通过“数字运维中台”,将原有的分散的运维监控数据统一采集、存储、归档到中台内,并且利用“统一监控平台”对这些数据进行分析管理,如果原来有CMDB数据,还能建立关联并生成拓扑图。
当故障发生、系统告警时,告警辨析中心能利用规则和算法,锁定最重要的那些告警信息,并根据统一监控平台梳理的数据关系,协助查询日志及其他故障数据,更快定位根因。
AIOps平台架构和各数据层关系
统一监控平台,说到底本质上也是一个监控系统,监控的基本能力是必不可少的,回归到监控的本质,先梳理下整个监控体系:
① 监控系统的本质是通过发现故障、解决故障、预防故障来为了保障业务的稳定。
② 监控体系一般来说包括数据采集、数据检测、告警管理、故障管理、视图管理和监控管理6大模块。而数据采集、数据检测和告警处理是监控的最小闭环,但如果想要真正把监控系统做好,那故障管理闭环、视图管理、监控管理的模块也缺一不可。
一、数据采集
1、采集方式
数据采集方式一般分为Agent模式和非Agent模式;
Agent模式包括插件采集、脚本采集、日志采集、进程采集、APM探针等
非Agent模式包括通用协议采集、Web拨测、API接口等
2、数据类型
监控的数据类型有指标、日志、跟踪数据三种类型。
指标数据是数值型的监控项,主要是通过维度来做标识。
日志数据是字符型的数据,主要是从中找一些关键字信息来做监控。
跟踪型数据反馈的是跟踪链路一个数据流转的过程,观察过程中的耗时性能是否正常。
3、采集频率
采集频率分秒级、分钟级、随机三种类型。常用的采集频率为分钟级。
4、采集传输
采集传输可按传输发起分类,也可按传输链路分类。
按传输发起分类有主动采集Pull(拉)、被动接收Push(推)
按传输链路分类有直连模式、Proxy传输。
其中Proxy传输不仅能解决监控数据跨网传输的问题,还可以缓解监控节点数量过多导致出现的数据传输的瓶颈,用Proxy实现数据分流。
5、数据存储
对于监控系统来说,主要有以下三种存储供选择
① 关系型数据库
例如MySQL、MSSQL、DB2;典型监控系统代表:Zabbix、SCOM、Tivoli;
由于数据库本身的限制,很难搞定海量监控的场景,有性能瓶颈,只在传统监控系统常用
② 时序数据库
为监控这种场景设计的数据库,擅长于指标数据存储和计算;例如InfluxDB、OpenTSDB(基于Hbase)、Prometheus等;典型监控系统代表:TICK监控框架、 Open-falcon、Prometheus
③ 全文检索数据库
这类型数据库主要用于日志型存储,对数据检索非常友好,例如Elasticsearch。
二、数据检测
1. 数据加工
① 数据清洗
数据清洗比如日志数据的清洗,因为日志数据是非结构化的数据,信息密度较低,因此需要从中提取有用的数据。
② 数据计算
很多原始性能数据不能直接用来判断数据是否产生异常。比如采集的数据是磁盘总量和磁盘使用量,如果要检测磁盘使用率,就需要对现有指标进行一个简单的四则运算,才能得到磁盘使用率。
③ 数据丰富
数据丰富就是给数据打上一些tags标签,比如打上主机、机房的标签,方便进行聚合计算。
④ 指标派生
指标派生指的是通过已有的指标,通过计算得出新的指标。
2. 检测算法
有固定规则和机器学习算法。固定算法是较为常见的算法,静态阈值、同比环比、自定义规则,而机器学习主要有动态基线、毛刺检测、指标预测、多指标关联检测等算法。
无论是固定规则还是机器学习,都会有相应的判断规则,即常见的< =和and/or的组合判断等。
三、告警管理
1. 告警丰富
告警丰富是为了后续告警事件分析做准备,需要辅助信息去判断该怎么处理、分析和通知。
告警丰富一般是通过规则,联动CMDB、知识库、作业历史记录等数据源,实现告警字段、关联信息的丰富;通过人工打Tags也是一种丰富方式,不过实际场景下由于人工成本高导致难以落地。
2. 告警收敛
告警收敛有三种思路:抑制、屏蔽和聚合
① 抑制
即抑制同样的问题,避免重复告警。常见的抑制方案有防抖抑制、依赖抑制、时间抑制、组合条件抑制、高可用抑制等。
② 屏蔽
屏蔽可预知的情况,比如变更维护期、固定的周期任务这些已经知道会发生的事件,心里已经有预期。
③ 聚合
聚合是把类似或相同的告警进行合并,因为可能反馈的是同一个现象。比如业务访问量升高,那承载业务的主机的CPU、内存、磁盘IO、网络IO等各项性能都会飙升,这样把这些性能指标都聚合到一块,更加便于告警的分析处理。
3. 告警通知
① 通知到人
通过一些常规的通知渠道,能够触达到人。
这样在没有人盯屏的时候,可以通过微信、短信、邮件触发到工作人员。
② 通知到系统
一般通过API推送给第三方系统,便于进行后续的事件处理
另外还需要支持自定义渠道扩展(比如企业里有自己的IM系统,可以自行接入)
四、故障管理
告警事件必须要处理有闭环,否则监控是没有意义的。
最常见还是人工处理:值班、工单、故障升级等。
经验积累可以把人工处理的故障积累到知识库里面,用于后续故障处理的参考。
自动处理,通过提取一些特定告警的固化的处理流程,实现特定场景的故障自愈;比如磁盘空间告警时把一些无用日志清掉。
智能分析主要是通过故障的关联分析、定位、预测等AI算法,进一步提升故障定位和处理的效率;
1. 视图管理
视图管理也属于增值性功能,主要是满足人的心理述求,做到心中有底,面向的角色很多(领导、管理员、值班员等)。
大屏:面向领导,提供全局概览
拓扑:面向运维人员,提供告警关联关系和影响面视图
仪表盘:面向运维人员,提供自定义的关注指标的视图
报表:面向运维人员、领导,提供一些统计汇总报表信息,例如周报、日报等
检索:面向运维人员,用于故障分析场景下的各类数据检索
2. 监控管理
监控管理是企业监控落地过程中的最大挑战。前5个模块都是监控系统对外提供的服务功能,而监控管理才是面向监控系统自身的管理和控制,关注真正落地的过程的功能呈现。主要有以下几个方面:
配置:简单、批量、自动
覆盖率:监控水平的衡量指标
指标库:监控指标的规范
移动端:随时随地处理问题
权限:使用控制
审计:管理合规
API:运维数据最大的来源,用于数据消费
自监控:自身稳定的保障
为了实现上述监控六大基础能力模块,我们可以按如下架构设计我们的统一监控平台。
主要分三层,接入层,能力层,功能层。
接入层主要考虑各种数据的接入,除了本身Agent和插件的采集接入,还需要支持第三方监控源的数据接入,才能算一个完整的统一监控平台。
能力层主要考虑监控的基础通用能力,包含数据采集模块、数据存储模块、数据加工模块、数据检测模块、AI分析模块。
功能层需要贴近用户使用场景,主要有管理、展示两类功能,在建设的过程中可以不断丰富功能场景。
另外,考虑到数据的关联关系,为未来的数据分析打下基础,监控和CMDB也需要紧密联动,所有的监控对象都应该用CMDB进行管理,另外,还可以配置驱动监控为指导理念,实现监控的自动上下线,告警通知自动识别负责人等场景,简化监控的维护管理。
为了统一监控平台能够在企业更好的落地,我们需要配备对应的管理体系,其中最重要的是指标管理体系。
指标管理体系的核心理念:
监控的指标体系是以CMDB为骨架,以监控指标为经脉,将整个统一监控平台的数据有机整合起来。
贯穿指标的生命周期管理,辅以指标的管理规范,保障监控平台长久有序的运行。
从企业业务应用的视角出发,一般将企业监控的对象分为6层,也可以根据企业自己的情况进行调整:
基础设施层
硬件设备层
操作系统层
组件服务层
应用性能层
业务运营层
智能运维系统是阿里云Elasticsearch(简称ES)运维智能监控平台的辅助产品运维智能监控平台,提供集群、节点、索引等二十余个诊断项运维智能监控平台的健康检测功能。
通过智能运维系统运维智能监控平台,您可以探测集群潜在风险,寻找最佳解决方案。同时智能运维系统还会自动归纳集群诊断结果,帮助您掌握集群最新态势,提取关键信息,让开发更便捷。智能运维系统支持以下功能运维智能监控平台:
开启或关闭智能运维服务、查看集群概况、诊断集群健康状况、支持定时诊断和自主诊断,并且可以选择诊断索引和诊断项、查看历史诊断报告。
截止2020年底我国光伏电站装机容量已达253GW,连续多年居世界第一位,而在“双碳”目标的宏伟愿景下,这仍旧只是一个起点。现阶段,随着补贴清退,光伏进入平价上网时代,面对光伏电站诸多复杂特性,如何对电站进行精细化管理,促进实现降本增效,成为电站资产持有者共同的关切点。
作为国内知名的智慧能源运营管理服务商,正泰智维秉持以客户为中心的服务理念,在正泰集团“一云两网”战略的规划下,自主研发了正泰Epower智能运维云平台,利用大数据、云计算技术,对电站进行集中式监控、智能化管理,助推电站运维向数字化、精细化转型,实现降本增效。
故障预处理,保电站安全稳定运行
正泰Epower智能运维云平台通过链接在电站各主要设备上的数据监测装置,对电站生产数据进行实时监测,并利用正泰智维超7GW运维体量的大数据库模型,对运维电站数据信息进行分析诊断,可提前发现电站异常故障点,平台系统自动判定故障预警级别并派发巡检工单,让运维人员及时对相应异常设备故障进行预处理,前置故障响应时间,将隐患在萌芽阶段消除,从而极大降低因设备故障维修造成的发电收益损失。
数字化管理,让运维电站透明化
通过与APP联动进行工单处理,可自动规划并记录运维人员巡检路线,运维人员在现场进行电站故障处理时,同步在APP上上传故障处理图文信息,分类型将故障处理情况进行线上实时反馈。在PC端与APP端双重联动,对运维全过程进行线上线下联动,让运维管理数字化,让一线运维透明化。
精细化管理,做好运维每一小步
正泰Epower智能运维管理云平台,通过对电站进行设备资产管理、备品备件管理、工单管理、报表管理、行政人事等模块进行集中式智能化管控,促进无纸化办公。从运维管理上导入科学成熟的流程制度,细化电站综合管理,提高流程效率,为电站营造良好的生产环境。
正泰Epower智能运维管理云平台,集成正泰10余年新能源电站运营管理经验、行业领先的运维管理技术,并在大规模实际应用中不断优化完善,目前平台已应用电站数量超700座,累计接入容量超7GW,广泛应用于多种类型电站,平均效益增长达3%-5%,深受服务业主好评。
正泰Epower智能运维管理云平台,用心做好运维管理的每一小步,用信息化管理手段为您的电站数字化赋能,与您携手共创智慧能源新时代!
关于运维智能监控平台和监控运营平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 运维智能监控平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于监控运营平台、运维智能监控平台的信息别忘了在本站进行查找喔。
发表评论
暂时没有评论,来抢沙发吧~