谈谈Kubernetes控制器原理

网友投稿 695 2022-11-02

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表睿象云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。

谈谈Kubernetes控制器原理

Kubernetes集群组成的几大核心组件,涵盖存储etcd数据,调度策略Scheduler,集群操作入口kube-apierver,各种控制器controller,代理客户端kube-proxy 和直接接管具体业务容器的kubelet服务。这些组件在功能架构支配上,可被划分为三个大类:作为存储的核心组件etcd kv 数据库;Kubernetes集群唯一可以对etcd数据库进行直接操作的入口组件kube-apierver;然后就是除上面两个以外的其他组件, “其他组件”之所以被归为一类,原因是“其他组件”都可以被当作集群的controller控制器。

本次我们分享的内容就是集群各种控制器的实现原理分析。

控制器虽然是 Kubernetes 集群中比较复杂的组件,但控制器本身对我们来说并不陌生。可以打比喻为它是我们每天使用的洗衣机、冰箱、空调等,都是依靠控制器才能正常工作。在控制器原理这一节,我们可以通过一个简单冰箱的设计过程,来加深对kubernetes集群控制器原理的理解。

形象的冰箱

这个简单的冰箱包括五个组件:箱体、制冷系统、照明系统、温控器以及门。

冰箱只有两个功能:

当有人打开冰箱门的时候,冰箱内的灯会自动开启;当有人按下温控器的时候,制冷系统会根据温度设置,调节冰箱内温度。

统一入口

对于上边的冰箱,我们可以简单抽象成两个部分:统一的操作入口和冰箱的所有组件。

在这里,用户只有通过入口,才能操作冰箱。这个入口提供给用户两个接口:开关门和调节温控器。用户执行这两个接口的时候,入口会分别调整冰箱门和温控器的状态。

但是这里有一个问题,就是用户通过这两个接口,既不能让冰箱内部的灯打开,也不能调节冰箱的温度。

控制器

控制器就是为了解决上边的问题产生的。控制器就是用户的操作,和冰箱各个组件的正确状态之间的一座桥梁:

当用户打开门的时候,控制器观察到了门的变化,它替用户打开冰箱内的灯;当用户按下温控器的时候,控制器观察到了用户设置的温度,它替用户管理制冷系统,调节冰箱内温度。

控制管理器

冰箱有照明系统和制冷系统,显然相比一个控制器管理着两个组件,我们替每个组件分别实现一个控制器是更为合理的选择。同时我们实现一个控制器管理器来统一维护所有这些控制器,来保证这些控制器在正常工作。

SharedInformer

上边的控制器和控制器管理器,看起来已经相当不错了。但是当冰箱功能增加,势必有很多新的控制器加进来。这些控制器都需要通过冰箱入口,时刻监控自己关心的组件的状态变化。比如照明系统控制器就需要时刻监控冰箱门的状态。当大量控制器不断的和入口通信的时候,就会增加入口的压力。

这个时候,我们把监控冰箱组件状态变化这件事情,交给一个新的模块 SharedInformer 来实现。

SharedInformer 作为控制器的代理,替控制器监控冰箱组件的状态变化,并根据控制器的喜好,把不同组件状态的变化,通知给对应的控制器。通过优化,这样的 SharedInformer 可以极大的缓解冰箱入口的压力。

ListWatcher

SharedInformer 方便了控制器对冰箱组件的监控,而这个机制最核心的功能,当然是主动获取组件状态和被动接收组件状态变化的通知。这两个功能加起来,就是 ListWatcher。

假设 SharedInformer 和冰箱入口通过 http 协议通信的话,那么 http 分块编码(chunked transfer encoding)就是实现 ListWatcher 的一个好的选择。控制器通过 ListWatcher 给冰箱入口发送一个查询然后等待,当冰箱组件有变化的时候,入口通过分块的 http 响应通知控制器。控制器看到 chunked 响应,会认为响应数据还没有发送完成,所以会持续等待。

以上我们从一个简易冰箱的进化过程中,了解了控制器产生的意义,扮演的角色,以及实现的方式。现在我们回到K8s 集群。K8s 集群实现了大量的控制器,而且在可以预见的未来,新的功能的控制器会不断出现,而一些旧的控制器也会被逐渐淘汰。

目前来说,我们比较常用的控制器,如 Pod 控制器、Deployment 控制器、Service 控制器、Replicaset 控制器等。这些控制器一部分是由 kube controller manager 这个管理器实现和管理,而像 route 控制器和 service 控制器,则由 cloud controller manager 实现。

之所以会出现 cloud controller manager,是因为在不同的云环境中,一部分控制器的实现,会因为云厂商、云环境的不同,出现很大的差别。这类控制器被划分出来,由云厂商各自基于 cloud controller manager 分别实现。

这里我们以阿里云 K8s 集群 cloud controller manager 实现的 route  控制器和 service 控制器为例,简单说明 K8s 控制器的工作原理。

服务控制器

首先,用户请求 API Server 创建一个 LoadBalancer 类型的服务,API Server 收到请求并把这个服务的详细信息写入 etcd 数据库。而这个变化,被服务控制器观察到了。

服务控制器理解 LoadBalancer 类型的服务,除了包括存放在 etcd 内部的服务记录之外,还需要一个 SLB 作为服务入口,以及若干 endpoints 作为服务后端。所以服务控制器分别请求 SLB 的云 openapi 和 API Server,来创建云上 SLB 资源,和集群内 endpoints 资源。

路由控制器

在集群网络一章中,我们提到过,当一个节点加入一个 K8s 集群的时候,集群需要在 VPC 路由表里增加一条路由,来搭建这个新加入节点到 Pod 网络的主干道。而这件事情,就是路由控制器来做的。路由控制器完成这件事情的流程,与上边服务控制器的处理流程非常类似,这里不再赘述。

基本上来说,K8s 集群的控制器,其实扮演着集群大脑的角色。有了控制器,K8s 集群才有机会摆脱机械和被动,变成一个自动、智能、有大用的系统。

上一篇:软件测试培训之Web应用功能测试测试点
下一篇:软件测试培训之测试数据的设计
相关文章

 发表评论

暂时没有评论,来抢沙发吧~